4-stage single-shot spectrometer.

Stephan Wesch¹ Christopher Behrens¹ Bernhard Schmidt¹ Peter Schmüser²

IRUVX WP3 Longitudinal Diagnostic Meeting, 27th – 28th October 2009

¹ Deutsches Elektronen-Synchrotron, Hamburg

² Institut für Experimentalphysik, Universität Hamburg

Motivation.

Goal:

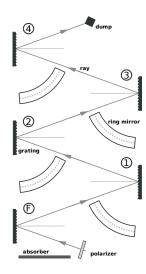
Diagnose longitudinal properties of electron bunch for better FEL performace!

One possible way is spectroscopy of coherent radiation:

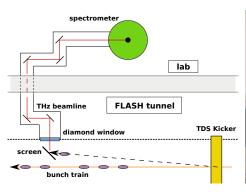
$$\boxed{ \left. \frac{dU}{d\omega d\Omega} \right|_{\rm bunch} \approx \left. \frac{dU}{d\omega d\Omega} \right|_{\rm e} \cdot N^2 \cdot \left| F(\omega, \vec{k}_\perp) \right|^2}$$

- not intrinsically limited in resolution
- not apriori a destructive method
- · not a direct measurement of current profile

Examples of applications:


- Bunch compression monitor
- Substructures (e.g. Microbunching Instability)
- Or Profile reconstruction (?)

Request:


Record spectra with wide wavelength coverage for each bunch in macropulse!

Principle*.

- * developed by Hossein Delsim-Hashemi
 - dispersive device reflective blazed gratings
 - high reflectance in 1st order at certain configuration
 - act like a mirror for a specific λ grating period ratio
 - staging dispersive elements (large spectral coverage)
- II. focussing special ring mirror
 - single mirror per stage (large dispersive angle of 60 deg)
 - focussing without geometric distortion
- III. detector pyro electric elements
 - wavelength range from 1 μm up to several 100 μm's
 - 30 single elements per stage
 - see Bernhard's talk
- IV. readout electronics
 - amplifier chain (up to 1 MHz readout rate)
 - ADC for each detector element (sampling rate 9 MHz)

4 Stage Spectrometer I.

schematic view of CTR generation

spectrometer vessel in laboratory

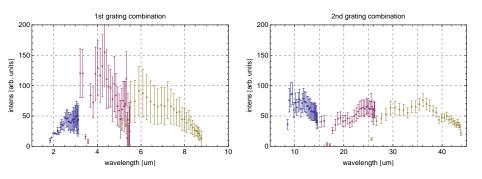
4 Stage Spectrometer II.

5/10

grating plane

detector plane

4 Stage Spectrometer III.



signal feedthrough

electronic rack

Test Spectrum.

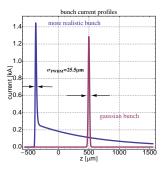
- test spectra under FEL condition
- spectra with 3 stages uncorrected data
- · errorbars show shot-to-shot fluctuation bandwidth
- 4th stage equipped with transmission grating (not in operation)

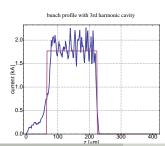
Two installations at FLASH.

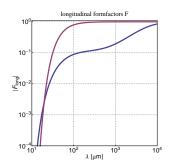
After last acceleration module:

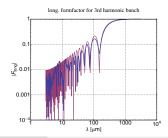
- a. TR station off/on-axis screens
- b. spectrometer outside tunnel
- good accessibily (for testing)
- → measure spectra of mostly full compressed bunch (dogleg missing)

In front of SASE undulators:


- a. TR screen off-axis / DR screen
- b. spectrometer inside tunnel
- monitor capability
- → measure spectra of 'undulator' bunches (after collimator, ORS and sFLASH)


Correlation of both spectrometers:


- i. bunch spectra evolution
- ii. 'cross check' of spectrometer behavior


Thank you for your attention!

Backup.

