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Optical Timing Synchronization

 We demand increasingly precise timing sync (<< 100 fs)

 Must sync multiple locations separated by ~ 1 km distances.
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Optical Timing Synchronization

 We demand increasingly precise timing sync (<< 100 fs)

 Must sync multiple locations separated by ~ 1 km distances.

 One way is to distribute timing information

via short optical pulses of a definite repetition rate.
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Synchronization System Layout
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A master mode-locked laser producing a very stable pulse train,
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Synchronization System Layout
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The master laser is locked to a microwave oscillator for long-term stability
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Synchronization System Layout
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Stabilized fiber links that transport the pulse train to multiple locations
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Synchronization System Layout
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Other lasers can be locked to this train or can generate an RF signal locally
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Optical Timing Synchronization

We envision that

i. a ultra-low noise master mode-locked laser,

ii. locked to an external source for long-term stability,

iii. with links to remote locations,

iv. and local generation of an RF signals,

form a complete scheme with < 100 fs, eventually few fs precision.
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Commercial Low-Noise Microwave Oscillators

 Very good microwave oscillators are commercially available
for low frequencies (< 1 kHz).

 Eventually can lock to an optical standard for µHz-level
stability.
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Timing stabilized fiber links
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Assuming no fiber length fluctuations faster than T=2nL/c.

L = 1 km, n = 1.5   =>  T=1 µs, fmax = 1 MHz
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Timing-Stabilized Fiber Links
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RF-synchronization module
for RF-optical & optical-optical
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Optical Pulse Train
(time domain)
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Amplitude-to-phase conversion introduces excess timing jitter 

Direct Detection to Extract RF from the Pulse Train
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 determine timing jitter due to power fluctuations

 mix 1.3 GHz component of laser signal to baseband and vary
optical power

Amplitude to Phase Conversion: Experimental Setup
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Amplitude to Phase Conversion in the PD

To minimize timing error at photodetection:

 increase bias

 use higher bandwidth detector
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The pulses sit on the zero-crossings
of VCO output when synchronized.

60 fs (100 Hz-10 MHz) demonstrated
<10 fs possible on the long run

J. W. Kim, F. X. Kärtner, M. Perrot, Opt. Lett. 29, 2076 (2004)
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Low-Noise Master Laser Oscillator



22

 Passively modelocked lasers, superior high-frequency noise.

 Er-fiber lasers:

 sub-100 fs to ps pulse duration

 1550 nm (telecom) wavelength for fiber-optic component availability

 repetition rate 50-100 MHz

 Reliable, long-term operation without interruption:

 weeks of uninterrupted operation, with minimal environmental
protection (just a box around)

 use multiple lasers for redundancy

Robust, Low-Noise Laser Oscillator Development
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Passively Mode-locked Fiber Lasers

output

anomalous
dispersion fiber

Er-fiber
(normal dispersion)

 Pulse builds up by itself from noise (ns-ps domain)

 A saturable absorber ensures higher intensity <=> higher gain

 Given constant intra-cavity energy, the stable solution is a localized solution (a
single pulse).

 Picture is different in the femtosecond domain:

 Dispersion and nonlinear dominate pulse shaping.

 Soliton-like pulses balance these effects => very short pulses
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Phase Noise (Timing Jitter) Measurements

 Quantum mechanical fluctuations in the photon number cause jitter:

(for soliton laser)

 Measurement Setup:

BPF

photodiode LNA SSB phase noise
measurement

(Agilent E5052)

mode-locked fiber laser
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Phase Noise (Timing Jitter) Results

Er-fiber laser at normal dispersion: ~50 fs (10 kHz - Nyquist)
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Phase Noise (Timing Jitter) Results

Yb-fiber laser near zero dispersion: ~23 fs (10 kHz - Nyquist)
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Amplitude Noise

Recall that amplitude noise is converted to phase noise at the photodetector.

Preliminary data indicate this contribution is substantial -- under investigation
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One of our Er-fiber lasers
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One of our Yb-fiber lasers
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 Optical timing synchronization based on:

 Ultra-low noise, long-term stabilized mode-locked fiber lasers,

 Stabilized fiber links to distribute to remote locations,
 A scheme to extract low-level RF from optical pulse train locally.

 Most critical component is the master laser:

 Laser dynamics important (dispersion, nonlinear effects).

 Ultimate limit set by quantum fluctuations in the photon number.

 Currently noise < 30 fs possible, may be lower.

 Currently < 100 fs seems achievable.

 Following a few years of development, < 10 fs may be reached.

Conclusions
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cw spike results in significant increase in phase
noise around 10 kHz

Timing jitter measurement with stretched pulse fiber laser

@ 2 GHz
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+

180o

f = f0 + KV

Transfer of timing information into intensity imbalance in optical domain
--- easier to measure

It is difficult to accurately measure very small timing variations.

RF-Synchronization Module
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J. Kim et al., Opt. Lett. 29, 2076 (2004)

(i)

(ii)

<60 fs jitter
(100Hz-10MHz)

Phase Noise Measurement


