

Investigation of the Phase Space Distribution of Electron Bunches at the FLASH-Linac Using a Transverse Deflecting RF-Structure

Michael Röhrs

Paul Scherrer Institut, June 2008

Michael Röhrs

horizontal

FLASH

Michael Röhrs

PSI, 19.06.08

Michael Röhrs

michael.roehrs@desy.de

PSI, 19.06.08

Michael Röhrs

michael.roehrs@desy.de

PSI, 19.06.08

Michael Röhrs

michael.roehrs@desy.de

Outline

- Setup at FLASH
- Measurement methods
- Results under FEL operating conditions
- Error sources
- Summary

The Free-Electron Laser in Hamburg (FLASH)

• Relative energy spread $\sim 10^{-3}$

PSI, 19.06.08

Michael Röhrs

michael.roehrs@desy.de

Setup

Beam dynamics

The TDS allows to investigate the peak current region

Michael Röhrs

Integration into the FLASH-linac

Michael Röhrs

Setup

Integration into the FLASH-linac

The transverse deflecting structure (TDS)

- Installed in 2003, Collaboration DESY-SLAC
- Frequency: 2.86 GHz
- Length: 3.6 m
- Maximum deflecting voltage ~ 25 MV @ 20 MW input power
- Maximum induced divergence @ 500 MeV:
 - ~1 mrad / ps

PSI, 19.06.08

Michael Röhrs

Setup

The TDS

- RF traveling wave structure, $v_{ph} = c$
 - Iris-loaded, cell length : 3.5 cm
 - A relativistic electron experiences a constant force during its passage:

 $F_y = F_0 \cdot \sin(\phi_{HF})$

PSI, 19.06.08

Michael Röhrs

Outline

- Measurement methods
 - Calibration
 - Current profile
 - Longitudinal phase space
 - Horizontal slice emittance and phase space
 - Slice centroid offsets
- Results under FEL operating conditions
- Error sources
- Summary

Methods

Longitudinal resolution and calibration measurements

PSI, 19.06.08

Michael Röhrs

michael.roehrs@desy.de

Position jitter

Moderate input power:

High input power:

Michael Röhrs

Measurement of the current profile

Measurement of current profiles

- Calibration of longitudinal distances
- Calibration of a charge density scale

Methods

Michael Röhrs

Methods

Measured current profiles of uncompressed bunches

Michael Röhrs

michael.roehrs@desy.de

Measurement of the distribution in longitudinal phase space

BC3 Quadrupole ACC5 ACC6 ACC4 magnets Dipole TDS **Kicker** • energy-dependent position on the screen: $\Delta x = D \cdot \frac{\Delta E}{E}$ • typical values: $D \sim 30 \text{ cm}, \ \sigma_x = 100 \ \mu\text{m} \Rightarrow \frac{\sigma_E}{E} \approx \frac{\sigma_x}{D} \sim 3 \cdot 10^{-4}$

Michael Röhrs

michael.roehrs@desy.de

Methods Meas

Measured distribution in longitudinal phase space of uncompressed bunches

650 MeV, 1nC, compressor chicanes switched off

Michael Röhrs

Slice emittance measurements

Michael Röhrs

Optics for slice emittance measurements

PSI, 19.06.08

Michael Röhrs

michael.roehrs@desy.de

Methods

Results: measured slice emittance at on-crest operation

PSI, 19.06.08

Michael Röhrs

Slice centroid offsets

Development during a scan of quadrupole magnets:

Michael Röhrs

michael.roehrs@desy.de

y-correlated and time-correlated

Methods

Tomographic reconstruction of phase space distributions

PSI, 19.06.08

Michael Röhrs

Outline

- Setup at FLASH
- Measurement methods
- Results under FEL operating conditions
- Error sources
- Summary

Measurement conditions

- Measurements performed at
 - 494 MeV (27 nm)
 - 677 MeV (13.7 nm)
 - 964 MeV (6.8 nm)
- Average pulse energy:
 - 0.5 µJ (964 MeV)
 - 5 μJ (677 MeV)
 - 10 μJ (494 MeV)
 - \rightarrow not saturated!
- Optics and beam orbit changed downstream of the compressor chicanes → no FEL-radiation during the measurements, but: longitudinal phase space and emittance not changed!

FI A.SH

Longitudinal phase space measured under FEL-operating conditions

PSI, 19.06.08

Michael Röhrs

michael.roehrs@desy.de

Comparison to simulations: longitudinal phase space under FEL operating conditions

*Simulations with ASTRA (K. Flöttmann) and CSRTrack (M. Dohlus)

Michael Röhrs

Measured current profile under FELoperating conditions

2.6

677 MeV, 0.5 nC 2 1.9 kA-Fluctuations from shot to shot: peak current I_{max} Averaged over 1.5 100 shots, 30 longitudinal I [kA] resolution ~8µm 22 µm 1.94 ± 0.14 kA 1 (RMS) 20 counts 0.13 nC 0.5 (25%) 10 -0.80 1.8 2.4 2 2.2 -0.6 -0.40.2 -0.20 I_{max} [kA]

PSI, 19.06.08

Michael Röhrs

ζ [mm]

494 MeV, 0.7 nC

PSI, 19.06.08

Michael Röhrs

Horizontal phase space

Results

michael.roehrs@desy.de

FEL-operating conditions: slice emittance

PSI, 19.06.08

Michael Röhrs

Dependence on the RF-phase of module ACC1

Comparison of experimental results and simulations: important parameters not known with sufficient accuracy, in particular the RF-phase of the first accelerating module (accuracy:~1°, needed: ~0.1°)

PSI, 19.06.08

Michael Röhrs

michael.roehrs@desy.de

Comparison to numerical simulations

Slice emittance

Current profile: Adaption of the RFphase of module ACC1

Simulations with ASTRA (K. Flöttmann) and CSRTrack (M. Dohlus)

Michael Röhrs

PSI, 19.06.08

Results

Michael Röhrs

michael.roehrs@desy.de

Michael Röhrs

michael.roehrs@desy.de

Michael Röhrs

michael.roehrs@desy.de

Michael Röhrs

michael.roehrs@desy.de

Michael Röhrs

michael.roehrs@desy.de

Michael Röhrs

michael.roehrs@desy.de

Michael Röhrs

michael.roehrs@desy.de

Emittance analysis

typical: 2-4 μ m normalized emittance, 0.5 – 1.0 kA peak current

- \rightarrow FEL radiation not saturated
- \rightarrow peak current may change downstream of the TDS

Michael Röhrs

Outline

- Setup at FLASH
- Measurement methods
- Results under FEL operating conditions
- Error sources
- Summary

Error sources: Error sources Horizontal slice emittance FLASH Principle limitations of the method • Upper bound for Shot-to-shot fluctuations in transverse phase emittance, lower space bound for peak Limitations of the longitudinal resolution current Errors in measured beam sizes: • Resolution of the optical system (< 26 µm RMS) Statistical errors of beam sizes (~10 % RMS) Calibration errors (~2 % RMS) Emittance error Dispersion (from the kicker) (\sim 10 % RMS) < 20 % (RMS) for Erroneous model for beam transfer due to typical conditions Quadrupole gradient errors Energy errors Simulation of a Transverse space charge forces measurement The detailed energy distribution ("chromaticity") using ASTRA

PSI, 19.06.08

Michael Röhrs

Error sources Simulation of an emittance measurement / a tomographic reconstruction

PSI, 19.06.08

Michael Röhrs

Error sources

Simulation of a slice emittance measurement

Michael Röhrs

Error sources Simulation of a tomographic reconstruction: peak current region

FLASH

PSI, 19.06.08

Michael Röhrs

- TDS successfully used to measure the current profile, longitudinal phase space and horizontal slice emittance with a longitudinal resolution of ~10 µm (30 fs)
- Strong increase in slice emittance observed in the highcurrent region, supposably due to CSR
- A tomographic reconstruction and a detailed phase space analysis are necessary in order to estimate the emittance of the "lasing fraction", slice emittance not conclusive

Thank you very much for your attention!