Femtosecond Optical Synchronization System for FLASH

Achievements and challenges during the first implementation phase

of an engineered version in the accelerator

Matthias Felber - DESY for the LbSyn Team

CLIC09 Workshop, CERN 15.10.2009

V. Arsov, M. Bock, P. Gessler, K. Hacker, F. Löhl, H. Schlarb, B. Schmidt, S. Schulz, A. Winter

Agenda

- Short Introduction to FLASH
- Synchronization Needs and System Layout
- The Basic Components of the System
- > Arrival Time Measurements and Feedback
- > RF Generation from Optical Pulse Train
- Closing Remarks

FLASH – Free Electron LASer Hamburg

- Started as test facility for the TESLA project
- Superconducting cavities at 1.3 GHz (~25 MV/m)
- > 3rd Harmonic Module at 3.9 GHz
- > Two dispersive sections for high peak currents
- > First user facility for VUV and soft X-ray laser pulses
- > Photon pulses have few 10 fs length
- > Pump-Probe experiments require synchronization on a 10 fs scale

Synchronization needs in an FEL facility

Main sources for arrival-time changes

- Arrival-time of the photo cathode laser pulses
- Phase of the RF gun
- Amplitude and phase of the booster module(s)

RF requirements for 10 fs arrival stability: $\Delta \phi < 0.005^{\circ}$ @ 1.3 GHz $\Delta A/A < 1.6^{*}10^{-5}$

Layout of the synchronization system

The reference timing information is encoded in the precise repetition rate of an optical pulse train

Schematic of the optical synchronization system at FLASH

- beam based feedback stabilization of arrival-time
- high precision synchronization of lasers
- synchronization of all timing critical devices (up to 14)
- ➔ Point-to-point synchronization ~ 10 fs rms (< 30 fs rms to beam)</p>
- ➔ Permanent operation and long term stability / availability investigation

The synchronization lab at FLASH

Optical table (full expansion state)

- two MLOs for redundancy
- free-space distribution
- four fiber (EDFA) distribution units
- up to 14 link stabilization units ('Fiber Links')
- RF-lock unit for MLO
- RF based link stabilization unit

Four electronic racks

- four VME crates (in future μTCA)
- 18 DSP controls (feedback loops)
- 18 piezo drivers (± 300 V)
- 20 pump laser diode drivers
- 16 stepper motor drivers
- > 40 temperature readouts
- tons of monitor signals
- ~ 300 cables to/from optical table

Master laser oscillator (MLO)

Properties

- mode-locked erbium-doped fiber laser
- 1550nm telecommunication wavelength
- repetition rate of 216.66 MHz (1.3 GHz /6)
- average power > 60 mW
- pulse duration < 100 fs (FWHM)</p>
- Integr. timing jitter ~15 fs [1 kHz, 10 MHz] (limited by measurement)
- amplitude noise < 2 · 10⁻⁴ [10 Hz, 40 MHz]

NPR type laser maybe not the best solution?

1st generation MLO

2nd generation MLO

3st generation MLO

'Plan B' MLO

Matthias Felber | Femtosecond Optical Synchronization System for FLASH | CLIC09 Workshop, CERN | 15.10.2009 | Page 8

Courtesy F. Loehl, S. Schulz, A. Winter

Distribution to up to 16 outputs

> Properties

- baseplate made of Invar
- two free space inputs, 16 collimator outputs
- same pathlength for each output
- 4-5 mW per output
- ~ 85% incoupling efficiency at all collimators

S. Schulz, FEL09, WEPC72

Matthias Felber | Femtosecond Optical Synchronization System for FLASH | CLIC09 Workshop, CERN | 15.10.2009 | Page 9

Fiber link stabilization

Balanced optical cross-correlator (OCC)

Matthias Felber | Femtosecond Optical Synchronization System for FLASH | CLIC09 Workshop, CERN | 15.10.2009 | Page 11

Beam arrival-time monitor (BAM)

sampling times of ADCs

Matthias Felber | Femtosecond Optical Synchronization System for FLASH | CLIC09 Workshop, CERN | 15.10.2009 | Page 12

Arrival time correlation between two BAMs

Arrival time difference contains:

- high frequency laser noise (~3 MHz 108 MHz)
- stability of two fiber links
- two BAMs

Single bunch resolution of entire measurement chain: < 6 fs (rms)

F. Loehl, PhD thesis, DESY-THESIS-09-031, 2009

Beam based injector feedback

Machine parameter:

Arrival-time of PCL Phase of RF gun Amplitude of booster Phase of booster module Monitor:

1st arrival time monitor difference 1st and 2nd arrival-time monitor EBPM + BPMs / difference 3rd and 2nd arrival-time monitor (/ SLM) (bunch compression monitor / fiber laser + EO)

Intra bunch-train arrival time feedback

RF generation from optical pulse train

- Direct Conversion
 - + Drift: 10.7 fs over >15 h @ 1.3 GHz (*M. Felber, PAC09, TH6REP088*)
 - + Jitter: 3.3 fs [1kHz,10MHz] @ 3 GHz (S. Hunziker, DIPAC09, TUPB43)
 - + small and robust
 - + 10 mW P_{opt} sufficient
 - relatively cheap (<2k€)
 - Small output power vs. amplifier drift
 - Amplitude to phase conversion: 1-4 ps/mW
 - Temperature dependency ~350 fs/°C

RF generation from optical pulse train

- - High power output (amplifier can be included in feedback)
 - Balanced scheme → potential for ultra-low drift: <7 fs over 7 h (*M. Felber, PAC09, TH6REP088*)

J. Kim et al., Nature Photonics 225: 733-736, 2008

Many more projects at LbSyn...

- RF-based fiber (short)link stabilization
 - RF based measurement of link length change <5 fs over 50 h (J. Zemella, FEL09, FROA05)

 locking lasers of different wavelength, e.g. Ti:Sa (800 nm) (S. Schulz, PAC09, TH6REP091)

Energy BPM (EBPM)

 use orbit dependency of pickup signal in chicane + two BAM setups (K. Hacker, FEL09, WEPC70)

Requirements for developing a synchronization system

Infrastructure

Environment

Temperature stabilization Vibration suppression EMI shielding

Typical laboratory equipment

Optical spectrum analyzer Autocorrelator RF Phase- and amplitude noise analyzer Baseband analyzer Fast scopes (≥8 GHz) RF spectrum analyzer (≥26 GHz desired) Splicer + PM splicing equipment etc...

Engineering skills

Optics (Free space- and fiber) Electronics (low noise analog / fast digital) FPGA programming Software (Control system integration / feedback) Mechanical (small and precise / big and robust) RF

> Time, Money and Manpower

- Prototypes for all subsystems have been built and demonstrated <10 fs stability
- Engineered versions of key components have been developed, some with major problems (MLO), some with good performance (Links)
- At FLASH, the system is in the commissioning phase (2 MLOs, 4 Link stabilizations, 3 BAMs, and 1 EBPM in operation)
- > Robustness and long-term (>month) reliability tests underway
- Installation of two more BAMs planned, till the end of the current shutdown (March 2010)
- Still a lot of development to do...

During the past five years many fruitful collaborations contributed to the progress

Thank you for your attention!

Matthias Felber | Femtosecond Optical Synchronization System for FLASH | CLIC09 Workshop, CERN | 15.10.2009 | Page 21

Backup

BAM Layout

laser laboratory optical BAM front-end fibre FRM laser pulse link MLO to other links distribution 0 with position encoder EOM 2 ADC pulse \sim shaping 108 MHz 2 pick-up signal attenuator R opl do 16 bit limiter (1) pick-up signal clock \subset EOM 1 ADC 50/50 clock 95/5 generation Splice Х SMF (i) vertical, pick-ups on beam pipe: PMF fine JĽ Connector (2) horizontal, Collimator coarse Coupler **Courtesy M. Bock**

Matthias Felber | Femtosecond Optical Synchronization System for FLASH | CLIC09 Workshop, CERN | 15.10.2009 | Page 23

BAM measurements – arrival time dependencies

BAM bunch train measurement - no arrival time feedback

