FLASH: Performance after the Upgrade and in the Future

Christopher Behrens based on slides from: B. Faatz, J. Feldhaus, K. Honkavaara, and S. Schreiber

HELMHOLTZ

LCLS-II Meeting SLAC, March 2, 2011

Outline

- FLASH, the User Facilty
- FLASH Upgrade
- Energy Upgrade and the Water Window
- Linearized Bunch Compression
- From Long Pulses to Short Pulses
- Machine Stability and Feedback Upgrades
- sFLASH, a Seeding Experiment
- "FLASH-II"
- Summary

FLASH,

the User Facility

FLASH at DESY in Hamburg

> Single-pass high-gain FEL

- Photon wavelength range from vacuum-ultraviolet to soft x-rays
- > Free-electron laser user facility since summer 2005
- FLASH is also a test bench for the European XFEL and the International Linear Collider (ILC)
- >sFLASH, a seeding experiment is in commissioning phase
- >"FLASH II", a second undulator beam line is in preparation

FEL Performance 2nd User Period (Nov-2007 – Aug-2009)

Typical User Operation Parameters 2nd User Period

Wavelength range (fundamental) Average single pulse energy Pulse duration (FWHM) Peak power (from avg.) Average power (example for 500 pulses/sec) Spectral width (FWHM) Peak Brilliance $\begin{array}{l} 6.8 - 40.5 \text{ nm} \\ 10 - 100 \ \mu\text{J} \\ 10 - 70 \ \text{fs} \\ 1 - 5 \ \text{GW} \\ \sim 15 \ \text{mW} \\ \sim 15 \ \text{mW} \\ 10^{29} - 10^{30} \ \text{*} \\ \end{array}$

> more than 100 publications on photon science at FLASH in high impact journals

http://hasylab.desy.de/facilities/flash/publications/selected_publications

FLASH Upgrade

Upgrade 2009 / 2010

>Upgrade Shutdown: September 2009 – February 2010

The New FLASH Layout

Energy Upgrade and the Water Window

Energy Upgrade

>7th superconducting TESLA type accelerating module installed

- Prototype module for the European XFEL
- Energy gain 240 MeV
- > Electron beam energy 1.20 GeV
- > Some optimization => 1.25 GeV

Bunches	Energy
1	1200.1 MeV
0.6 nC Bunch RepRate	

FLASH Undulators

- > 6 undulator modules, total length 27 m
- > Fixed gap of 12 mm
 - permanent NdFeB magnets
 - peak B = 0.48 T, K = 1.23, period of 27.3 mm

Access to the Water Window

- > On 25-Sep-2010, we achieved to push the beam energy above 1.2 GeV
- >First lasing in the water window at 4.12 nm with the fundamental
- > Single pulse energy ~130 μ J (max), ~70 μ J (avg)

4.1 nm

Linearized

Bunch Compression

3.9 GHz (3rd harmonic) Module and Module 1

> New 1st accelerating module with improved cavities and Piezo tuners

- > 3rd harmonic module with four nine-cell superconducting cavities operated at 3.9 GHz
 - includes RF system and LLRF regulation
 - built at FNAL (Fermilab) in a collaboration with DESY

Bunch Compression Using 3rd-harmonic Cavities

- > measured with LOLA
- > dispersive section
- > beam energy 700 MeV
- slight compression with 1st module (ACC1)
- > 3.9 GHz cavities off

Bunch Compression Using 3rd-harmonic Cavities

Bunch Compression Using 3rd-harmonic Cavities

Energy dE/E (0.1 %)

- > measured with LOLA
- > dispersive section
- >beam energy 700 MeV
- > slight compression with 1st module (ACC1)
- > 3.9 GHz cavities on/off

Linearization of the Longitudinal Phase Space

1st module (ACC1) set to moderate compression

Bunch shape measured for increasing voltage in the 3rd harmonic cavities

Examples of Lasing During Commissioning

> 10 Hz, between 1 and 120 bunches (1 MHz), compression using 3.9 GHz cavities

Examples:

- > 4.45 nm, 140 μ J max, average 75 μ J per pulse
- > 12.4 nm, 105 μ J max, average 75 μ J per pulse
- > 13.4 nm, 300 μ J max, average 250 μ J per pulse
- > 19.2 nm, 350 μ J max, average 230 μ J per pulse
- > 26.2 nm, 280 μ J max, average 160 μ J per pulse

Radiation pulse energies are significantly higher and easier to tune compared to roll-over compression

Examples During User Run: 13 nm, Single Bunch

06:38:42 06:39:42 06:40:42 06:41:42 06:42:42 06:43:42 06:44

4.8 nm, 250 Pulses/Train, 1 MHz

Example 32 nm, 50 bunches 1 MHz

From Long Pulses to Short Pulses

Long Pulses: Short Pulses Wanted!

Tuning and Characterisation of Short Electron Bunches and FEL Radiation Pulses at 14 nm

Short FEL photon pulses (<50fs) are desired!

For this reason, dedicated beam time was scheduled during the last accelerator studies in January 2011.

Characterisation Techniques

- Electron pulse:
 - LOLA (bunch shape)
 - Toroids (charge)
 - Pyro detectors (signal related to bunch shape and charge)
- Photon pulse:
 - Pulse energy (GMD and MCP)
 - Measurements of statistical fluctuations (MCP)
 - Spectral measurements (PGM)

LOLA images @ 500 pC

LOLA images @ 150 pC

Results: Pulse Energy and Number of Modes

• SASE at 14 nm was tuned to max. pulse energy level for different charges:

150 pC	25-35 uJ
250 pC	35 uJ
500 pC	>200 uJ

- Then the SASE process was suppressed in the undulator modules 5 and 6 (by orbit kick) in order to operate the FEL in the linear regime.
- The number of modes was determined by statistical measurements using MCP07 detector. Measured number of modes in the linear regime:

Results: Spectral Measurements

Statistics

500 pC: sigma = 29%, M = 12, T_rad ~ **60 fs** (+10 fs + 30 fs) **150 pC**: sigma = 60%, M = 2.8, T_rad ~ **15 fs** (+10 fs + 7 fs)

Machine Stabilty and

Feedback Upgrades

Upgrade LLRF Control Software

>Unified and new control software

- New C++ architecture for front-end server
- Finite State Machine for automation
- High level software: diagnostics, calibration...
- Integration to data acquisition system
- Model based learning feed forward (LFF)
- Loop phase/gain correction
- Fast piezo control for cavity detuning comp.
- ... and many more

Control software ~80 % completed excellent progress in the last year

First Results on Stability and Beam-based Feedbacks

- > Arrival time jitter (minutes) reduced from ~200 fs to 70 fs rms → dE/E (ACC1) < 1 · 10⁻⁴
- Learning feedforward (LFF) and beam based feedbacks (BBFB)
 - \rightarrow 20 fs rms arrival time stability

Still in R&D phase

sFLASH,

a Seeding Experiment

sFLASH: Experiment for Seeded FEL Radiation

- > Goal: generation of seeded FEL radiation for piloting experiments
- > Installed between the collimator and SASE undulators in the FLASH linac \rightarrow new electron beamline with a length of ~ 40 m
- > HHG (high harmonic generation) seeding at ~ 38 nm (~ 13 nm as an option)
- > Synchronisation goal for pump probe experiments: 10 fs
- > Collaboration of DESY and University Hamburg

sFLASH Section

"FLASH-II"

"FLASH II"

Second undulator line and experimental hall Common proposal by DESY and Helmholtz-Zentrum Berlin (HZB) Project approved, construction starts end of 2011

Layout after Upgrade for "FLASH II".

- Separation FLASH and "FLASH II" behind last accelerator module
- Tunability of "FLASH II" by undulator gap change
- Extend user capacity with SASE and HHG seeding
- Use of existing infrastructure up to last accelerating module

"FLASH II": foreseen operation modes.

Self Amplified Spontaneous Emission (SASE) mode: Start from density fluctuations spiky, but at full rep.rate and short and long pulses possible.

SEEDING SCHEME PHASE 1:

High Harmonic Generation (**HHG**) mode (see also sFLASH): *Amplify an external, frequency multiplied seed laser.* Only short pulses, but close to single mode down to ~10 nm.

Study for seeding towards shorter wavelength:

High Gain Harmonic Generation (**HGHG**) mode:

Amplify a long wavelength seed and apply frequency multiplication in FEL process. Only short pulses (up to ~5-30 fs), but close to single mode down to ~4 nm.

Echo Enabled Harmonic Generation (EEHG) as option.

Hybrid mode: HGHG with HHG source

Tunnel Layout

Time Schedule

- Starting now : Preparation of "FLASH II" construction
- September 2011 : Start of tunnel construction Needs ~3 months interruption of FLASH operation
- Late Spring 2012 : Start to install technical infrastructure
- Summer 2012 : Start to mount hardware
- Winter/Spring 2013 : Vacuum connection with FLASH I
- Early Summer 2013: Start commissioning of "FLASH II" with beam
- Spring 2014(?) : Start of user operation "FLASH II"

Summary

- >Successful re-start of FLASH after the upgrade
- >We have reached the water window
- >FEL beam more intense and stable than ever, tuning easier
- Tuning of short pulses is possible with linearized compression scheme
- >LLRF and beam-based feedbacks have been significantly improved
- >Photon beamlines and diagnostics have been significantly improved
- >The seeding experiment sFLASH is in commissioning phase
- >FLASH-II is approved and funded

