# Measurement and Control of the Longitudinal Phase Space at High-Gain Free-Electron Lasers.

Christopher Behrens

Deutsches Elektronen-Synchrotron (DESY)

33<sup>rd</sup> International Free-Electron Laser Conference August 25, 2011, Shanghai





- Introduction and Motivation
- Principle of Longitudinal Phase Space Diagnostics
- 3 Control and Manipulation of the Longitudinal Phase Space
- Special Applications of Longitudinal Phase Space Diagnostics
- 5 Summary and Conclusions

# Motivation for Longitudinal Phase Space Diagnostics

## Requirements of high-gain free-electron lasers including various seeded schemes

- ▶ Good electron beam quality in terms of energy spread, emittance, and peak current
- ➤ Time-resolved (i.e. longitudinal) information and control of these parameters
- ▶ Control of beam instabilities and corresponding diagnostics problems, e.g. COTR
- Measurement and tunability of electron and photon pulse lengths

# Motivation for Longitudinal Phase Space Diagnostics

#### Requirements of high-gain free-electron lasers including various seeded schemes

- ▶ Good electron beam quality in terms of energy spread, emittance, and peak current
- ► Time-resolved (i.e. longitudinal) information and control of these parameters
- Control of beam instabilities and corresponding diagnostics problems, e.g. COTR
- Measurement and tunability of electron and photon pulse lengths

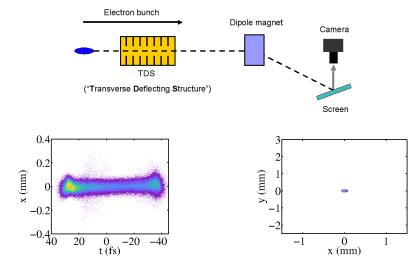
## Measurement and control of the longitudinal phase space $(t, \delta)$

- Longitudinal position t=-z/c and relative energy or momentum deviation  $\delta=\frac{\Delta p}{p_0}$
- 6-d beam transport matrix provide a powerful formalism to discuss the underlying physics

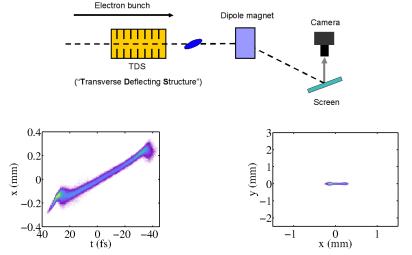
$$\begin{pmatrix} x_f \\ x_f' \\ y_f \\ y_f' \\ t_f \\ \delta_f \end{pmatrix} = \begin{pmatrix} R_{11} & R_{12} & R_{13} & R_{14} & R_{15} & R_{16} \\ R_{21} & R_{22} & R_{23} & R_{24} & R_{25} & R_{26} \\ R_{31} & R_{32} & R_{33} & R_{34} & R_{35} & R_{36} \\ R_{41} & R_{42} & R_{43} & R_{44} & R_{45} & R_{46} \\ R_{51} & R_{52} & R_{53} & R_{54} & R_{55} & R_{56} \\ R_{61} & R_{62} & R_{63} & R_{64} & R_{65} & R_{66} \end{pmatrix} \cdot \begin{pmatrix} x_i \\ x_i' \\ y_i \\ y_i' \\ t_i \\ \delta_i \end{pmatrix}$$

# Motivation for Longitudinal Phase Space Diagnostics

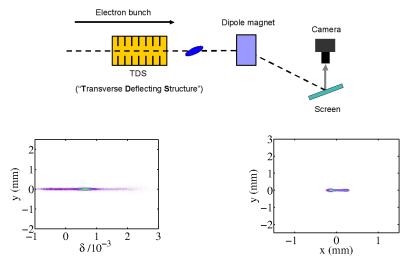
## Requirements of high-gain free-electron lasers including various seeded schemes


- ▶ Good electron beam quality in terms of energy spread, emittance, and peak current
- ▶ Time-resolved (i.e. longitudinal) information and control of these parameters
- Control of beam instabilities and corresponding diagnostics problems, e.g. COTR
- ▶ Measurement and tunability of electron and photon pulse lengths

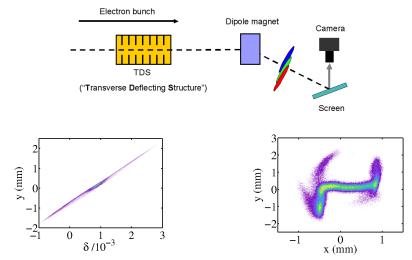
## Measurement and control of the longitudinal phase space $(t, \delta)$


- Longitudinal position t=-z/c and relative energy or momentum deviation  $\delta=\frac{\Delta p}{p_0}$
- 6-d beam transport matrix provide a powerful formalism to discuss the underlying physics

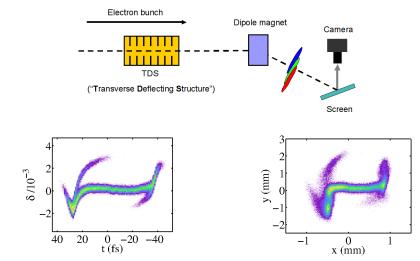
$$\begin{pmatrix} x_f \\ x_f' \\ y_f \\ y_f' \\ t_f \\ \delta_f \end{pmatrix} = \begin{pmatrix} R_{11} & R_{12} & R_{13} & R_{14} & R_{15} & R_{16} \\ R_{21} & R_{22} & R_{23} & R_{24} & R_{25} & R_{26} \\ R_{31} & R_{32} & R_{33} & R_{34} & R_{35} & R_{36} \\ R_{41} & R_{42} & R_{43} & R_{44} & R_{45} & R_{46} \\ R_{51} & R_{52} & R_{53} & R_{54} & R_{55} & R_{56} \\ R_{61} & R_{62} & R_{63} & R_{64} & R_{65} & R_{66} \end{pmatrix} \cdot \begin{pmatrix} x_i \\ x_i' \\ y_i \\ y_i' \\ t_i \\ \delta_i \end{pmatrix}$$


- ★ Transverse Deflecting RF Structure in combination with an energy (dipole) spectrometer
- Single-shot capability and high resolution in both energy and time




Start with initial distributions in (t, x) and (x, y)




- TDS imposes a time-dependent transversal kick  $\Delta x'(t) \sim \sin(t) \approx t$  (at zero-crossing)
- Appropriate beam transport optics  $(R_{12})$  maps  $\Delta x'(t) \to \Delta x(t)$ , i.e.  $\Delta x(t) \sim t$
- Time information is translated to the horizontal position



▶ Start again with present distributions in  $(\delta, y)$  and (x, y)



- ▶ Dipole magnet imposes a energy-dependent transversal kick  $\Delta y'(\delta) \sim \delta$
- ▶ Appropriate beam transport optics ( $R_{34}$ ) maps  $\Delta y'(\delta) \to \Delta y(\delta)$ , i.e.  $\Delta y(\delta) \sim \delta$
- ★ Energy information is translated to the vertical position



- **\star** Transformation of the longitudinal phases space  $(t, \delta)$  to (x, y)
- ★ Good agreement compared to the real longitudinal phase space
- ★ Simulation shows some discrepancy when looking into the details

## Measureable beam size and time resolution using a TDS

$$au$$
  $x(s,t)=x_0(s)+S(s)\cdot t$  with shear function  $S(s)=\frac{eV_0\omega}{E}\sqrt{\beta_1\beta_2(s)}\sin(\Delta\Psi_x(s))$  ( $S=R_{15}$ )

$$lacktriangledown$$
  $\sigma_{x}=\sqrt{\sigma_{x_0}^2+(S\cdot\sigma_t)^2}\Rightarrow$  r.m.s. definition of time resolution  $\sigma_{R,t}=\sigma_{x_0}/S$ 

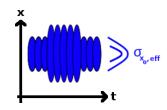
#### Measureable beam size and time resolution using a TDS

$$au$$
  $x(s,t)=x_0(s)+S(s)\cdot t$  with shear function  $S(s)=\frac{eV_0\omega}{E}\sqrt{\beta_1\beta_2(s)}\sin(\Delta\Psi_x(s))$  ( $S=R_{15}$ )

$$lacktriangledown$$
  $\sigma_{x}=\sqrt{\sigma_{x_0}^2+(S\cdot\sigma_t)^2}\Rightarrow \text{r.m.s.}$  definition of time resolution  $\sigma_{R,t}=\sigma_{x_0}/S$ 

#### Measureable beam size and energy resolution using an energy spectrometer

- $y(s, \delta) = y_0(s) + D(s) \cdot \delta$  with dispersion function D(s) ( $D = R_{36}$ )
- lacktriangledown  $\sigma_{
  m y}=\sqrt{\sigma_{
  m y_0}^2+(D\cdot\sigma_{\delta})^2}\Rightarrow$  r.m.s. definition of rel. energy resolution  $\sigma_{
  m R,\delta}=\sigma_{
  m y_0}/D$
- $\star$  Small intrinsic beam sizes at screen position and large S and D improve resolution


#### Measureable beam size and time resolution using a TDS

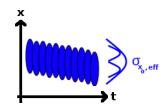
$$ightharpoonup x(s,t) = x_0(s) + S(s) \cdot t$$
 with shear function  $S(s) = \frac{eV_0\omega}{E} \sqrt{\beta_1\beta_2(s)} \sin(\Delta\Psi_x(s))$  ( $S = R_{15}$ )

• 
$$\sigma_{x} = \sqrt{\sigma_{x_0}^2 + (S \cdot \sigma_t)^2} \Rightarrow$$
 r.m.s. definition of time resolution  $\sigma_{R,t} = \sigma_{x_0}/S$ 

## Measureable beam size and energy resolution using an energy spectrometer

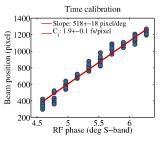
- $y(s, \delta) = y_0(s) + D(s) \cdot \delta$  with dispersion function D(s) ( $D = R_{36}$ )
- $lackbox{} \sigma_{y} = \sqrt{\sigma_{y_0}^2 + (D \cdot \sigma_{\delta})^2} \Rightarrow \text{r.m.s.}$  definition of rel. energy resolution  $\sigma_{R,\delta} = \sigma_{y_0}/D$
- $\star$  Small intrinsic beam sizes at screen position and large S and D improve resolution
- ★ Intrinsic beam size could vary along the bunch

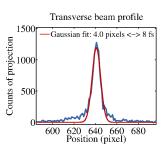



#### Measureable beam size and time resolution using a TDS

$$\qquad \qquad x(s,t) = x_0(s) + S(s) \cdot t \text{ with shear function } S(s) = \frac{eV_0\omega}{E} \sqrt{\beta_1\beta_2(s)} \sin(\Delta\Psi_x(s)) \qquad (S \hat{=} R_{15})$$

• 
$$\sigma_x = \sqrt{\sigma_{x_0}^2 + (S \cdot \sigma_t)^2} \Rightarrow$$
 r.m.s. definition of time resolution  $\sigma_{R,t} = \sigma_{x_0}/S$ 

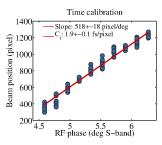

## Measureable beam size and energy resolution using an energy spectrometer

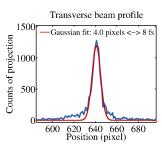

- $y(s, \delta) = y_0(s) + D(s) \cdot \delta$  with dispersion function D(s) ( $D = R_{36}$ )
- lacktriangledown  $\sigma_{
  m y}=\sqrt{\sigma_{
  m y_0}^2+(D\cdot\sigma_{\delta})^2}\Rightarrow$  r.m.s. definition of rel. energy resolution  $\sigma_{
  m R,\delta}=\sigma_{
  m y_0}/D$
- $\star$  Small intrinsic beam sizes at screen position and large S and D improve resolution
- ★ Intrinsic beam size could vary along the bunch
- ★ Bunch could have a tilt
- ⇒ Definition describes the overall resolution
- The same is valid for the energy resolution



## Calibration, Resolution, and Impact of Jitter: Time

#### Time calibration: Scanning of RF phase



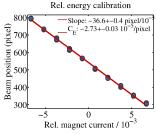

- ▶ Time calibration: Centroid offset versus RF phase ( $\phi = \omega t \sim t$ )
- ▶ Time resolution: Beam size without shearing by the TDS

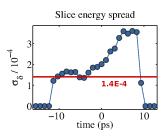
## Calibration, Resolution, and Impact of Jitter: Time

#### Time calibration: Scanning of RF phase





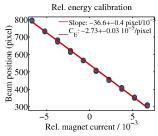

- ▶ Time calibration: Centroid offset versus RF phase ( $\phi = \omega t \sim t$ )
- ▶ Time resolution: Beam size without shearing by the TDS

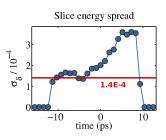

## Impact of jitter sources on tranverse jitter

- Might be a problem for calibration which is a multi-shot procedure
- The only relevant jitter is arrival time  $\sigma_t$  and RF phase jitter  $\sigma_\phi$   $\to \sigma_x = S \cdot \sigma_t$  and  $\sigma_x = S \cdot \omega^{-1} \cdot \sigma_\phi$
- Basically this is under control for stable machines and can even be improved

## Calibration, Resolution, and Impact of Jitter: Energy

Energy calibration: Scanning of magnet current (energy)




- ▶ Energy calibration: Centroid offset versus energy or simply magnet current ( $\Delta I/I_0$ )
- ▶ Energy resolution: Minimum slice energy spread of uncompressed bunches (reso. limited)

## Calibration, Resolution, and Impact of Jitter: Energy

## Energy calibration: Scanning of magnet current (energy)



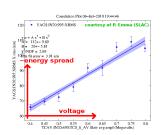


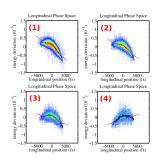
- ▶ Energy calibration: Centroid offset versus energy or simply magnet current ( $\Delta I/I_0$ )
- ▶ Energy resolution: Minimum slice energy spread of uncompressed bunches (reso. limited)

## Impact of jitter sources on tranverse jitter

- Might be a problem for calibration which is a multishot procedure
- The only relevant jitter is energy jitter  $\sigma_{\delta}$  $\rightarrow \sigma_{v} = D \cdot \sigma_{\delta}$
- ★ Basically this is under control, but pay attention to hysteresis effects

#### TDS-induced energy spread and chirp: Theory and Experiment

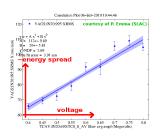

- Transverse deflecting structures induce
- Thick-lens matrix ⇒ induced energy chirp

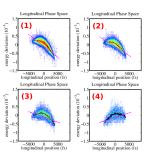

Transverse deflecting structures induce energy spread (Panofsky-Wenzel theorem) Thin-lens matrix 
$$\rightarrow \sigma_{\delta} = K\sigma_{x} = \frac{eVk}{pc}\sigma_{x}$$
Thick-lens matrix  $\Rightarrow$  induced energy chirp

#### TDS-induced energy spread and chirp: Theory and Experiment

- Transverse deflecting structures induce energy spread (Panofsky-Wenzel theorem) Thin-lens matrix  $\rightarrow \sigma_{\delta} = K \sigma_{x} = \frac{eVk}{pc} \sigma_{x}$
- Thick-lens matrix ⇒ induced energy chirp

$$\begin{pmatrix} x_f \\ x'_f \\ t_f \\ \delta_f \end{pmatrix} = \begin{pmatrix} 1 & L & KL/2 & 0 \\ 0 & 1 & K & 0 \\ 0 & 0 & 1 & 0 \\ K & KL/2 & K^2L/6 & 1 \end{pmatrix} \cdot \begin{pmatrix} x_i \\ x'_i \\ t_i \\ \delta_i \end{pmatrix}$$



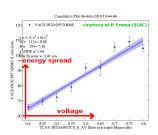

#### TDS-induced energy spread and chirp: Theory and Experiment

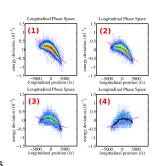
- Transverse deflecting structures induce energy spread (Panofsky-Wenzel theorem) Thin-lens matrix  $\rightarrow \sigma_{\delta} = K \sigma_{x} = \frac{eVk}{pc} \sigma_{x}$
- Thick-lens matrix ⇒ induced energy chirp

$$\begin{pmatrix} x_f \\ x'_f \\ t_f \\ \delta_f \end{pmatrix} = \begin{pmatrix} 1 & L & KL/2 & 0 \\ 0 & 1 & K & 0 \\ 0 & 0 & 1 & 0 \\ K & KL/2 & K^2L/6 & 1 \end{pmatrix} \cdot \begin{pmatrix} x_i \\ x'_i \\ t_i \\ \delta_i \end{pmatrix}$$





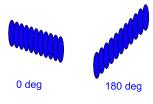

Coherent synchrotron radiation effects in the energy spectrometer


- ★ Basically negligible due to the fact that
  - time is transformed (e.g. in x) in front of the spectrometer
  - dispersion starts energy transformation (e.g. in y) before CSR is built up

## TDS-induced energy spread and chirp: Theory and Experiment

- Transverse deflecting structures induce energy spread (Panofsky-Wenzel theorem) Thin-lens matrix  $\rightarrow \sigma_{\delta} = K\sigma_{x} = \frac{eVk}{pc}\sigma_{x}$
- Thick-lens matrix ⇒ induced energy chirp

$$\begin{pmatrix} x_f \\ x'_f \\ t_f \\ \delta_f \end{pmatrix} = \begin{pmatrix} 1 & L & KL/2 & 0 \\ 0 & 1 & K & 0 \\ 0 & 0 & 1 & 0 \\ K & KL/2 & K^2L/6 & 1 \end{pmatrix} \cdot \begin{pmatrix} x_i \\ x'_i \\ t_i \\ \delta_i \end{pmatrix}$$





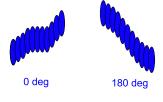

Wakefield effects

★ Basically negligible when having no large position offsets

Initial correlations in  $(x^\prime,t)$  may give different results when changing zero-crossing



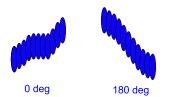
• 
$$\sigma_{x} = \sqrt{\sigma_{x_0}^2 + (C \pm S)^2 \cdot \sigma_t^2}$$


Initial correlations in (x',t) may give different results when changing zero-crossing



• 
$$\sigma_x = \sqrt{\sigma_{x_0}^2 + (C \pm S)^2 \cdot \sigma_t^2}$$

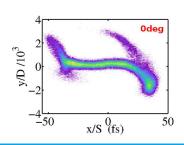
★ If C is a constant: simple calculation using values at ±S (0 and 180 deg)

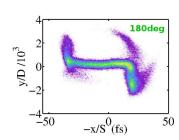

Initial correlations in  $(x^\prime,t)$  may give different results when changing zero-crossing



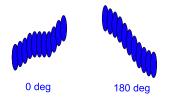
• 
$$\sigma_x = \sqrt{\sigma_{x_0}^2 + (C \pm S)^2 \cdot \sigma_t^2}$$

- ★ If C is a constant: simple calculation using values at ±S (0 and 180 deg)
- ★ If C varies along the bunch (i.e. C(t)): reconstruction from both projections is possible (idea and Ref. by H. Loos (SLAC))


Initial correlations in (x',t) may give different results when changing zero-crossing



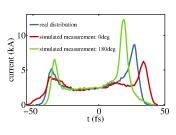

• 
$$\sigma_x = \sqrt{\sigma_{x_0}^2 + (C \pm S)^2 \cdot \sigma_t^2}$$


- ★ If C is a constant: simple calculation using values at ±S (0 and 180 deg)
- ★ If C varies along the bunch (i.e. C(t)): reconstruction from both projections is possible (idea and Ref. by H. Loos (SLAC))

#### Simulated measurements with both zero-crossings (0 and 180 deg)

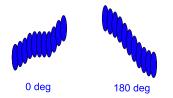





Initial correlations in (x',t) may give different results when changing zero-crossing



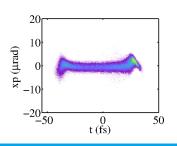
• 
$$\sigma_x = \sqrt{\sigma_{x_0}^2 + (C \pm S)^2 \cdot \sigma_t^2}$$


- ★ If C is a constant: simple calculation using values at ±S (0 and 180 deg)
- ★ If C varies along the bunch (i.e. C(t)): reconstruction from both projections is possible (idea and Ref. by H. Loos (SLAC))

Simulated measurements with both zero-crossings (0 and 180 deg)

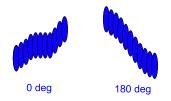


· Strong effects in head and tail


Initial correlations in (x',t) may give different results when changing zero-crossing



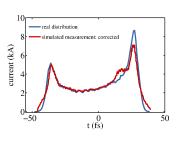
• 
$$\sigma_x = \sqrt{\sigma_{x_0}^2 + (C \pm S)^2 \cdot \sigma_t^2}$$


- ★ If C is a constant: simple calculation using values at  $\pm S$  (0 and 180 deg)
- ★ If C varies along the bunch (i.e. C(t)): reconstruction from both projections is possible (idea and Ref. by H. Loos (SLAC))

#### Simulated measurements with both zero-crossings (0 and 180 deg)



- · Strong effects in head and tail
- ★ Linear scaling will not help


Initial correlations in (x',t) may give different results when changing zero-crossing

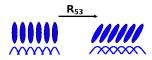


• 
$$\sigma_x = \sqrt{\sigma_{x_0}^2 + (C \pm S)^2 \cdot \sigma_t^2}$$

- ★ If C is a constant: simple calculation using values at  $\pm S$  (0 and 180 deg)
- ★ If C varies along the bunch (i.e. C(t)): reconstruction from both projections is possible (idea and Ref. by H. Loos (SLAC))

#### Simulated measurements with both zero-crossings (0 and 180 deg)

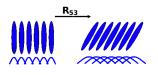



- · Strong effects in head and tail
- Linear scaling will not help
- ★ Reconstruction from two projections

## Time coordinate along the energy spectrometer

▶ Longitudinal position after the spectrometer:  $t_f = R_{53} \cdot y_i + R_{54} \cdot y_i' + t_i + R_{56} \cdot \delta_i$ 

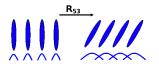
#### Time coordinate along the energy spectrometer


- ▶ Longitudinal position after the spectrometer:  $t_f = R_{53} \cdot y_i + R_{54} \cdot y_i' + t_i + R_{56} \cdot \delta_i$
- lacktriangledown  $\sigma_{t_f}pprox R_{53}\cdot\sigma_{y_i}$  and  $R_{53}pprox lpha$  i.e. the bending angle of the dipole
- ▶  $R_{53} \cdot \sigma_{y_i}$  smears out density modulations



Microbunches overlap and smear out

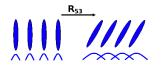
#### Time coordinate along the energy spectrometer


- ▶ Longitudinal position after the spectrometer:  $t_f = R_{53} \cdot y_i + R_{54} \cdot y_i' + t_i + R_{56} \cdot \delta_i$
- lacksquare  $\sigma_{t_f}pprox R_{53}\cdot\sigma_{y_i}$  and  $R_{53}pproxlpha$  i.e. the bending angle of the dipole
- ▶  $R_{53} \cdot \sigma_{y_i}$  smears out density modulations



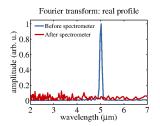
- Microbunches overlap and smear out
- Larger beam size  $\rightarrow$  larger overlap

#### Time coordinate along the energy spectrometer


- ▶ Longitudinal position after the spectrometer:  $t_f = R_{53} \cdot y_i + R_{54} \cdot y_i' + t_i + R_{56} \cdot \delta_i$
- $ightharpoonup \sigma_{t_f} pprox R_{53} \cdot \sigma_{y_i}$  and  $R_{53} pprox lpha$  i.e. the bending angle of the dipole
- ▶  $R_{53} \cdot \sigma_{y_i}$  smears out density modulations



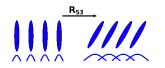
- Microbunches overlap and smear out
- $\bullet \ \ \text{Larger beam size} \to \text{larger overlap}$
- Larger period → less overlap


#### Time coordinate along the energy spectrometer

- ▶ Longitudinal position after the spectrometer:  $t_f = R_{53} \cdot y_i + R_{54} \cdot y_i' + t_i + R_{56} \cdot \delta_i$
- $\sigma_{t_f} \approx R_{53} \cdot \sigma_{y_i}$  and  $R_{53} \approx \alpha$  i.e. the bending angle of the dipole
- ▶  $R_{53} \cdot \sigma_{y_i}$  smears out density modulations

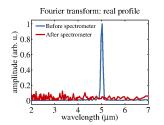


- Microbunches overlap and smear out
- Larger beam size → larger overlap
- Larger period → less overlap


#### Particle tracking simulation with initial density modulation



- ▶  $5 \,\mu\mathrm{m}$  modulation in  $(t, \delta)^{\mathrm{T}}$  before the spectrometer
- ▶ No modulation in  $(t, \delta)^T$  after the spectrometer

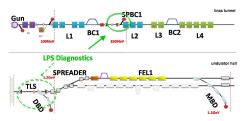

#### Time coordinate along the energy spectrometer

- ▶ Longitudinal position after the spectrometer:  $t_f = R_{53} \cdot y_i + R_{54} \cdot y_i' + t_i + R_{56} \cdot \delta_i$
- $ightharpoonup \sigma_{t_f} pprox R_{53} \cdot \sigma_{y_i}$  and  $R_{53} pprox \alpha$  i.e. the bending angle of the dipole
- ▶  $R_{53} \cdot \sigma_{y_i}$  smears out density modulations



- Microbunches overlap and smear out
- Larger beam size → larger overlap
- Larger period → less overlap

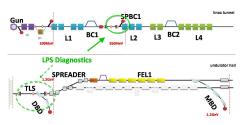
#### Particle tracking simulation with initial density modulation



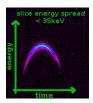

- ▶ 5  $\mu \text{m}$  modulation in  $(t, \delta)^{\text{T}}$  before the spectrometer
- ▶ No modulation in  $(t, \delta)^T$  after the spectrometer
- $\star$  Wavelengths  $\lambda_c \ll 2\pi R_{51}\sigma_x$  will be suppressed
- ★ Proposal: Strong COTR mitigation in an energy spectrometer ⇒ emittance measurements

## Longitudinal Phase Space Diagnostics at FERMI@Elettra

Courtesy of P. Craievich. For details: WEPA03.


## Free Electron Laser for Multidisciplinary Investigations (FERMI)



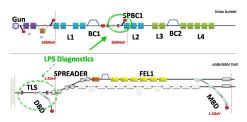

## Longitudinal Phase Space Diagnostics at FERMI@Elettra

Courtesy of P. Craievich. For details: WEPA03.

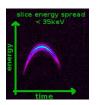
## Free Electron Laser for Multidisciplinary Investigations (FERMI)

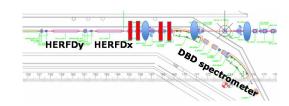


## Longitudinal phase space diagnostics at FERMI@Elettra




LPS data in SPBC1 at low energy


## Longitudinal Phase Space Diagnostics at FERMI@Elettra


Courtesy of P. Craievich. For details: WEPA03.

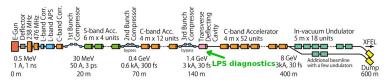
### Free Electron Laser for Multidisciplinary Investigations (FERMI)



## Longitudinal phase space diagnostics at FERMI@Elettra



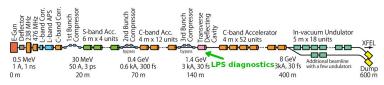



► LPS data in SPBC1 at low energy

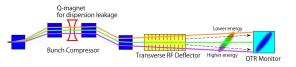
High energy TDS (both planes) will be installed soon

## Longitudinal Phase Space Diagnostics at SACLA/SPring-8

Courtesy of Y. Otake.


## SPring-8 Angstrom Compact Free-Electron Laser (SACLA)



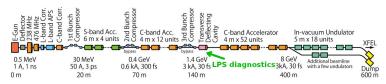

# Longitudinal Phase Space Diagnostics at SACLA/SPring-8

Courtesy of Y. Otake.

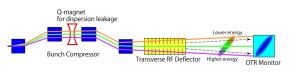
### SPring-8 Angstrom Compact Free-Electron Laser (SACLA)



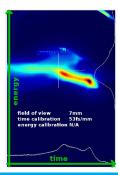
### Longitudinal phase space diagnostics at SACLA




- Quadrupole kicks in a dispersive section
- Residual dispersion after the bunch compressor


# Longitudinal Phase Space Diagnostics at SACLA/SPring-8

Courtesy of Y. Otake.


### SPring-8 Angstrom Compact Free-Electron Laser (SACLA)

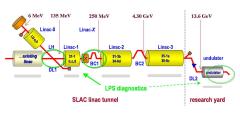


### Longitudinal phase space diagnostics at SACLA

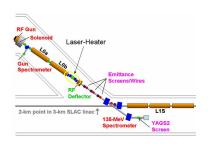


- Quadrupole kicks in a dispersive section
- Residual dispersion after the bunch compressor
- Still in commissioning phase
- Preliminary longitudinal phase space measurement




Courtesy of Y. Ding, P. Emma, and H. Loos.

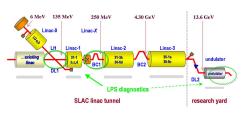
## The Linac Coherent Light Source (LCLS)



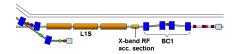

Courtesy of Y. Ding, P. Emma, and H. Loos.

### The Linac Coherent Light Source (LCLS)




### Longitudinal phase space diagnostics at LCLS



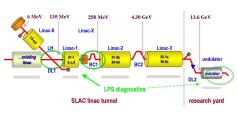

- Longitudinal phase space diagnostics
- Longitudinal phase space manipulation
  - Laser heater

Courtesy of Y. Ding, P. Emma, and H. Loos.

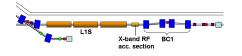
#### The Linac Coherent Light Source (LCLS)

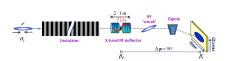


### Longitudinal phase space diagnostics at LCLS




- Longitudinal phase space diagnostics
  - Longitudinal phase space manipulation

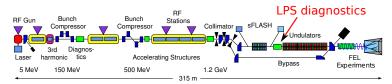

     Laser heater
- Longitudinal phase space linearization
  - X-band RF linearizer


Courtesy of Y. Ding, P. Emma, and H. Loos.

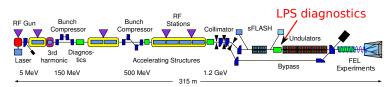
### The Linac Coherent Light Source (LCLS)



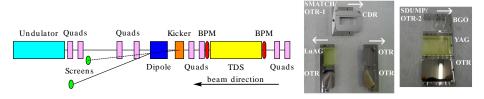
#### Longitudinal phase space diagnostics at LCLS





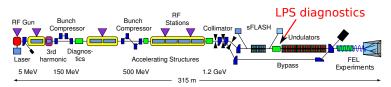


- Longitudinal phase space diagnostics
- Longitudinal phase space manipulation

  Laser heater
- Longitudinal phase space linearization
   X-band RF linearizer
- A balla IXI lillice
- In preparation
   X-band TDS after the undulators (project started this July)

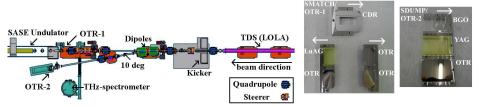

The Free-Electron Laser in Hamburg (FLASH)



#### The Free-Electron Laser in Hamburg (FLASH)

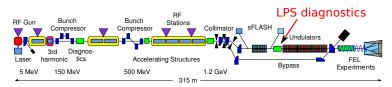



### Longitudinal phase space diagnostics at FLASH

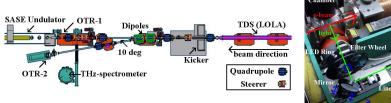


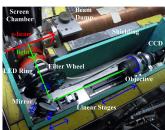

Longitudinal phase space diagnostics in front of the undulators

#### The Free-Electron Laser in Hamburg (FLASH)



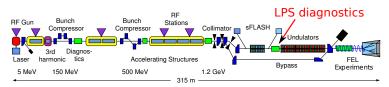

### Longitudinal phase space diagnostics at FLASH



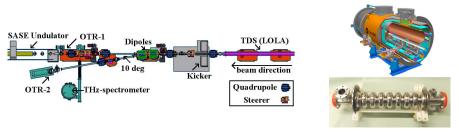


Longitudinal phase space diagnostics in front of the undulators

#### The Free-Electron Laser in Hamburg (FLASH)



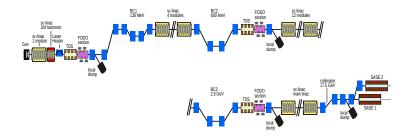

### Longitudinal phase space diagnostics at FLASH



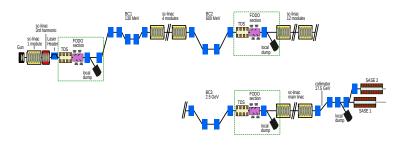



- Longitudinal phase space diagnostics in front of the undulators
- Indispensable for beam dynamics studies in general

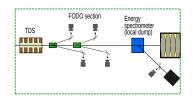
The Free-Electron Laser in Hamburg (FLASH)




## Longitudinal phase space diagnostics at FLASH




- Longitudinal phase space diagnostics in front of the undulators
- ▶ Indispensable for beam dynamics studies in general
- ▶ Longitudinal phase space linearizations with third-harmonic RF linearizer (3.9 GHz)

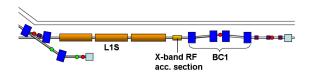

### European X-Ray Free Electron Laser (E-XFEL)

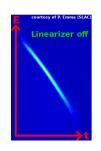


### European X-Ray Free Electron Laser (E-XFEL)



### Longitudinal phase space diagnostics at E-XFEL





- Three setups for longitudinal phase space measurements (including slice emittance)
- Higher-harmonic RF linearizer and a laser heater
- Proposal: Apply longitudinal phase space diagnostics on individuals bunches of the train (septum magnet)

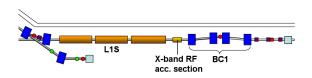
## Longitudinal Phase Space Linearization at LCLS/SLAC

For details: TUOCAB02 by P. Emma et al. in the Proceedings of PAC'07

## Linearization of the longitudinal phase space using an X-band RF linearizer






#### Measurements

Longitudinal phase space (off-crest):
 X-band linearizer switched off


## Longitudinal Phase Space Linearization at LCLS/SLAC

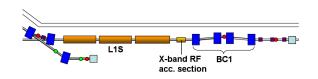
For details: TUOCAB02 by P. Emma et al. in the Proceedings of PAC'07

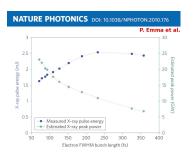
### Linearization of the longitudinal phase space using an X-band RF linearizer








#### Measurements

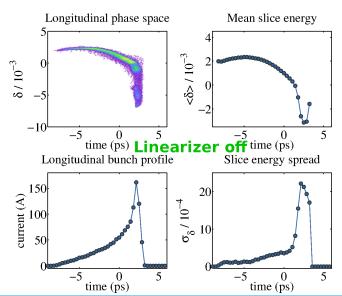

- Longitudinal phase space (off-crest):
   X-band linearizer switched off
- Longitudinal phase space (off-crest):
   X-band linearizer switched on

## Longitudinal Phase Space Linearization at LCLS/SLAC

For details: TUOCAB02 by P. Emma et al. in the Proceedings of PAC'07

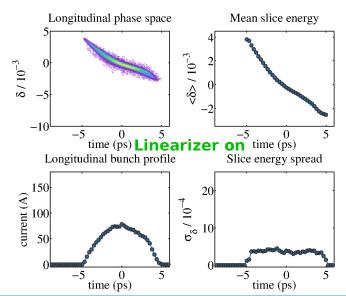
## Linearization of the longitudinal phase space using an X-band RF linearizer





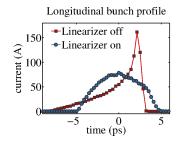

#### Measurements

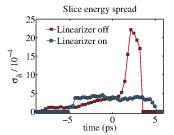
- Longitudinal phase space (off-crest):
   X-band linearizer switched off
- Longitudinal phase space (off-crest):
   X-band linearizer switched on
- Control of the bunch lengths allows control of the FEL photon pulse durations (still a hot topic)

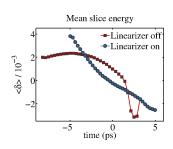

## Longitudinal Phase Space Linearization at FLASH/DESY

Measurement of the longitudinal phase space: third-harmonic RF linearizer off

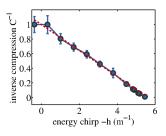



## Longitudinal Phase Space Linearization at FLASH/DESY

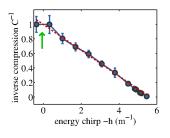

Measurement of the longitudinal phase space: third-harmonic RF linearizer on

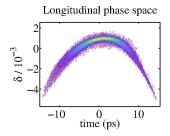



# Longitudinal Phase Space Linearization at FLASH/DESY

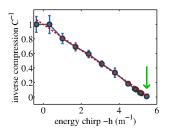

### Comparison: third-harmonic RF linearizer on/off

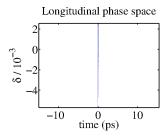




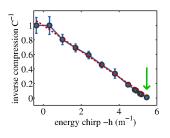



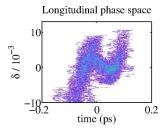

- ► Compression in a magnetic bunch compressor:  $C^{-1} = (1 + h_1 R_{56}) + (h_2 R_{56} + 2h_1^2 T_{566})t_i$
- $h_1,h_2$ : first and second order energy chirp
- R<sub>56</sub>, T<sub>566</sub>: first and second oder longitudinal dispersion
- ▶ Eliminate time-dependency of  $C^{-1}$  by using a proper  $h_2 \Rightarrow$  higher-harmonic RF system (dual-frequency)



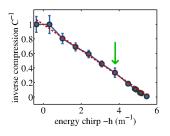


Measurements on linear bunch compression using only one bunch compressor

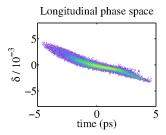




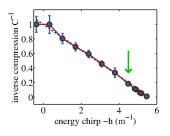


• Start with uncompressed bunches  $(C^{-1}=1)$ 

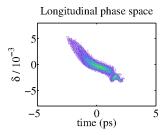




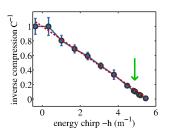


- Start with uncompressed bunches (C<sup>-1</sup> = 1)
- $\bullet~$  End with compressed bunches  $({\it C}^{-1} \rightarrow 0)$

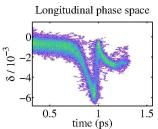


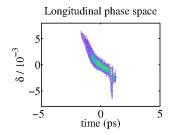




- Start with uncompressed bunches (C<sup>-1</sup> = 1)
- End with compressed bunches  $(C^{-1} \rightarrow 0)$



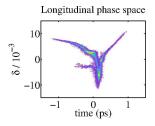




- Start with uncompressed bunches (C<sup>-1</sup> = 1)
- End with compressed bunches  $(C^{-1} \rightarrow 0)$



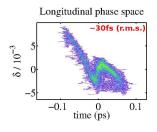


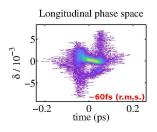

- Start with uncompressed bunches (C<sup>-1</sup> = 1)
- End with compressed bunches  $(C^{-1} \rightarrow 0)$

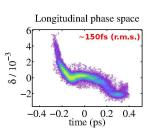






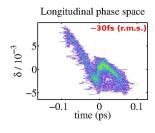


- Start with uncompressed bunches  $(C^{-1} = 1)$
- End with compressed bunches  $(C^{-1} \rightarrow 0)$
- ★ Strong local compression due to collective effects (not fully understood yet)

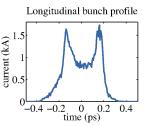

#### The old non-linear compression mode

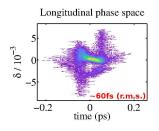


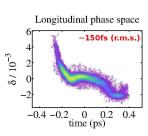

★ Non-linear compression: sharp leading spike (small charge fraction) with a long trailing tail

#### FEL operation with new linear compression mode



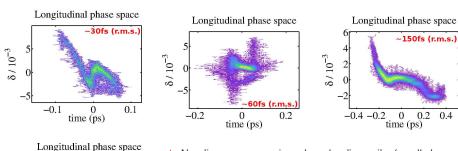



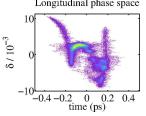





- ★ Non-linear compression: sharp leading spike (small charge fraction) with a long trailing tail
- ★ Linear compression: flexible bunch lengths and shapes (more regular but still complex)
- ★ Linear compression: more FEL pulse energies (at least 4×)

#### FEL operation with new linear compression mode








- ★ Non-linear compression: sharp leading spike (small charge fraction) with a long trailing tail
- ★ Linear compression: flexible bunch lengths and shapes (more regular but still complex)
- ★ Linear compression: more FEL pulse energies (at least 4×)
  - Appearance of double-horns like at LCLS

#### FEL operation with new linear compression mode



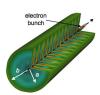


- ★ Non-linear compression: sharp leading spike (small charge fraction) with a long trailing tail
- ★ Linear compression: flexible bunch lengths and shapes (more regular but still complex)
- ★ Linear compression: more FEL pulse energies (at least 4×)
- Appearance of double-horns like at LCLS
- ★ Double-horns show some fragmentation

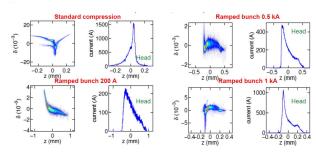
# Tailoring the Longitudinal Phase Space for Wakefield Experiments

For details: P. Piot et al., Fermilab preprint PUB-11-339-APC (2011)

#### Beam-driven acceleration with drive and witness bunch



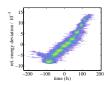

- Wakefield acceleration in dielectric structures using drive and witness bunches
- ▶ Transformer ratio  $R = \frac{E_+}{E_-}$  is limited to  $\leq 2$  for symmetric current profiles

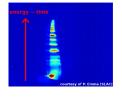

# Tailoring the Longitudinal Phase Space for Wakefield Experiments

For details: P. Piot et al., Fermilab preprint PUB-11-339-APC (2011)

#### Beam-driven acceleration with drive and witness bunch



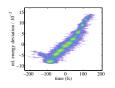

- Wakefield acceleration in dielectric structures using drive and witness bunches
- ▶ Transformer ratio  $R = \frac{E_+}{E_-}$  is limited to  $\leq 2$  for symmetric current profiles
- ▶ Enhancement of the R by linearly ramped current profiles

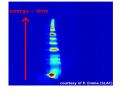



 $\star$  Linearly ramped current profiles (from experiment) enables (from simulations) R > 6

## Observations of Microbunching Instabilities in Time-domain

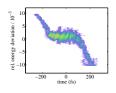
#### Linearly chirped bunches with intensity modulations at FLASH/DESY and LCLS/SLAC

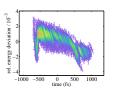



- Indication of microbunches
- Density modulations (FLASH)
- Energy modulations (LCLS)
  - ullet chirped bunches  $o E \propto t$

### Observations of Microbunching Instabilities in Time-domain

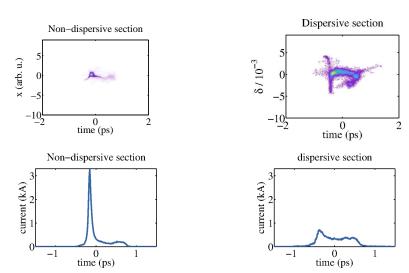

#### Linearly chirped bunches with intensity modulations at FLASH/DESY and LCLS/SLAC





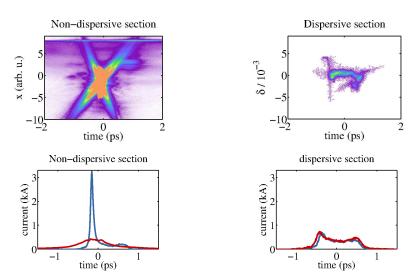

- Indication of microbunches
- Density modulations (FLASH)
- Energy modulations (LCLS)
  - chirped bunches  $\rightarrow$   $E \propto t$

Tilted microbunches and energy spread increase at FLASH/DESY



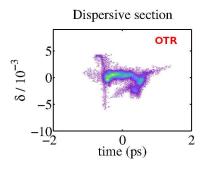


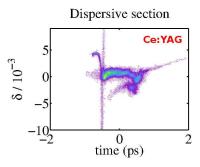

- Indication and observation of:
  - tilted microbunches
  - increased slice energy spread
- Common observation since operation with linear compression


★Better control of slice energy spread is needed, especially for seeded FELs

# Mitigation of Coherent Optical Transition Radiation: Experiment Compression instability: Charge 0.4 nC




★ Strong discrepancy of current profiles between non-dispersive and dispersive section


# Mitigation of Coherent Optical Transition Radiation: Experiment Compression instability: Charge 0.5 nC



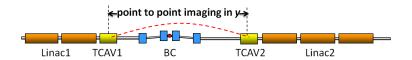
★ Local COTR emission spoils current profile measurement in non-dispersive section

## Mitigation of Coherent Optical Transition Radiation: Experiment





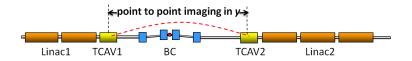
- ★ COTR is most probably generated by an ultra-short local spike
- ★ No indication for COTR in the dispersive section
- Poster on mitigation of COTR in the non-dispersive section at FLASH (M. Yan et al. THPB16)


- Transverse deflecting structures induce energy spread (Panofsky-Wenzel theorem)
   ★ beam heating (cf. laser-heater)
- ▶ Energy spread is correlated, i.e. reversible ★ heat only where it's necessary

$$\begin{pmatrix} y_f \\ y_f' \\ t_f \\ \delta_f \end{pmatrix} = \begin{pmatrix} 1 & L & KL/2 & 0 \\ 0 & 1 & K & 0 \\ 0 & 0 & 1 & 0 \\ K & KL/2 & K^2L/6 & 1 \end{pmatrix} \cdot \begin{pmatrix} y_i \\ y_i' \\ t_i \\ \delta_i \end{pmatrix}$$

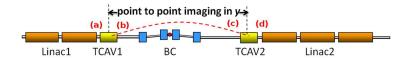
- ➤ Transverse deflecting structures induce energy spread (Panofsky-Wenzel theorem)
   ★ beam heating (cf. laser-heater)
- ► Energy spread is correlated, i.e. reversible ★ heat only where it's necessary

$$\begin{pmatrix} y_f \\ y_f' \\ y_f' \\ t_f \\ \delta_f \end{pmatrix} = \begin{pmatrix} 1 & L & KL/2 & 0 \\ 0 & 1 & K & 0 \\ 0 & 0 & 1 & 0 \\ K & KL/2 & K^2L/6 & 1 \end{pmatrix} \cdot \begin{pmatrix} y_i \\ y_i' \\ t_i \\ \delta_i \end{pmatrix}$$

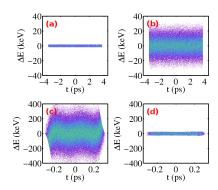

Reversible beam heating combining two transverse deflecting structures (cavities)

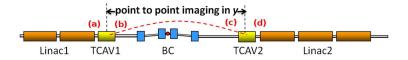


- Transverse deflecting structures induce energy spread (Panofsky-Wenzel theorem)
   ★ beam heating (cf. laser-heater)
- ► Energy spread is correlated, i.e. reversible ★ heat only where it's necessary

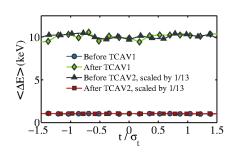

$$\begin{pmatrix} y_f \\ y_f' \\ t_f \\ \delta_f \end{pmatrix} = \begin{pmatrix} 1 & L & KL/2 & 0 \\ 0 & 1 & K & 0 \\ 0 & 0 & 1 & 0 \\ K & KL/2 & K^2L/6 & 1 \end{pmatrix} \cdot \begin{pmatrix} y_i \\ y_i' \\ t_i \\ \delta_i \end{pmatrix}$$

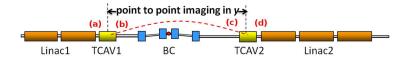
Reversible beam heating combining two transverse deflecting structures (cavities)



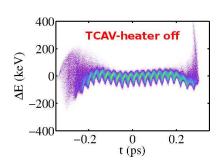


- ► Transport matrix: TCAV1 → TCAV2 (streaking ⊥ bending plane)
- ★ *K*<sub>1</sub>*R*<sub>56</sub>: effective energy spread for microbunching suppression
- energy spread and spatial chirp cancelation

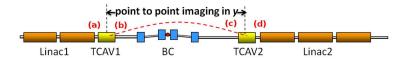
$$\begin{pmatrix} a + \frac{bL_2}{2} + \frac{K_1K_2R_{56}L_2}{2} & \frac{L_2}{2a} & 0 & \frac{K_2L_2R_{56}}{2} \\ b + K_1K_2R_{56} & a^{-1} & 0 & K_2R_{56} \\ K_1R_{56} & 0 & 1 + hR_{56} & R_{56} \\ 0 & 0 & 0 & \frac{1}{1 + hR_{56}} \end{pmatrix}$$



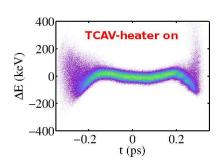


- Longitudinal phase space:
  - start with 1 keV slice energy spread
  - compression  $C \approx 13$

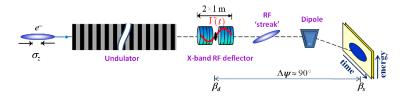


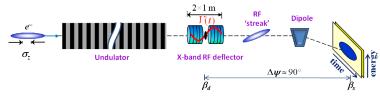




- Longitudinal phase space:
  - start with 1 keV slice energy spread
  - compression of about  $C \approx 13$
- ★ Perfect cancelation of additional energy spread induced by TCAV1
  - CSR: small differences in the tails

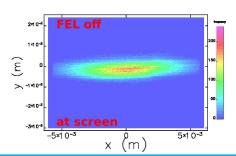






- Longitudinal phase space:
  - start with 1 keV slice energy spread
    - compression of about  $C \approx 13$
- ★ Perfect cancelation of additional energy spread induced by TCAV1
  - CSR: small differences in the tails
- ★ CSR-driven microbunching:
  - start with 5% density modulation
- ★ TCAV-heater switched off

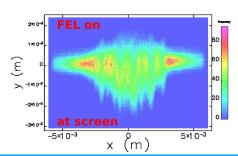


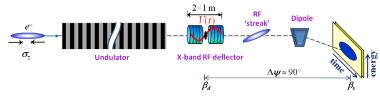




- Longitudinal phase space:
  - start with 1 keV slice energy spread
    - compression of about  $C \approx 13$
- ★ Perfect cancelation of additional energy spread induced by TCAV1
  - CSR: small differences in the tails
- ★ CSR-driven microbunching:
  - start with 5% density modulation
- ★ TCAV-heater switched on

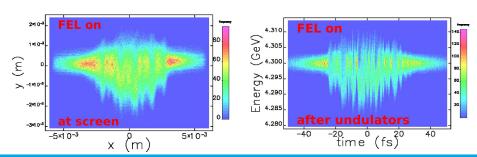




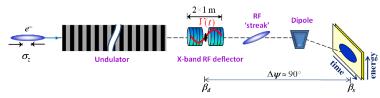





FEL: Genesis -> Tracking: elegant

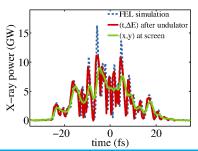





FEL: Genesis -> Tracking: elegant

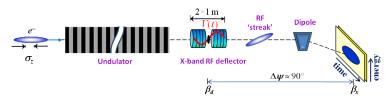




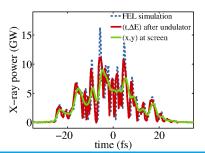


FEL: Genesis -> Tracking: elegant



#### Longitudinal phase space diagnostics right after the undulators




### FEL: Genesis -> Tracking: elegant




- Time-dependent energy loss and spread due to FEL process
- Correlation with temporal FEL photon pulse profile (replica of FEL photon pulse)

#### Longitudinal phase space diagnostics right after the undulators



### FEL: Genesis -> Tracking: elegant



- Time-dependent energy loss and spread due to FEL process
- Correlation with temporal FEL photon pulse profile (replica of FEL photon pulse)
- ★ All features of high-resolution longitudinal phase space diagnostics (electrons beams):
  - independent of FEL wavelength
  - high-dynamic range
  - single-shot temporal profiles

### Longitudinal phase space diagnostics based on TDS and energy spectrometer

- ★ Provide useful information on electron beams
- ★ Both with high resolution, high dynamic range, and single-shot capability

### Longitudinal phase space diagnostics based on TDS and energy spectrometer

- ★ Provide useful information on electron beams
- ★ Both with high resolution, high dynamic range, and single-shot capability
- ★ Mitigation of coherent radiation effects of screen based diagnostics, e.g. COTR

#### Longitudinal phase space diagnostics based on TDS and energy spectrometer

- ★ Provide useful information on electron beams
- ★ Both with high resolution, high dynamic range, and single-shot capability
- ★ Mitigation of coherent radiation effects of screen based diagnostics, e.g. COTR
- ★ Be aware of systematic errors and the definition and meaning of resolution

### Longitudinal phase space diagnostics based on TDS and energy spectrometer

- ★ Provide useful information on electron beams
- ★ Both with high resolution, high dynamic range, and single-shot capability
- ★ Mitigation of coherent radiation effects of screen based diagnostics, e.g. COTR
- ★ Be aware of systematic errors and the definition and meaning of resolution

### Control of the longitudinal phase space by dual-frequency linear accelerators

- ★ Higher harmonic RF systems for longitudinal phase space linearizations

   linear compression
- ★ Improvement of FEL performance in terms of pulse length tunabilty and intensity

### Longitudinal phase space diagnostics based on TDS and energy spectrometer

- ★ Provide useful information on electron beams
- ★ Both with high resolution, high dynamic range, and single-shot capability
- ★ Mitigation of coherent radiation effects of screen based diagnostics, e.g. COTR
- ★ Be aware of systematic errors and the definition and meaning of resolution

### Control of the longitudinal phase space by dual-frequency linear accelerators

- ★ Higher harmonic RF systems for longitudinal phase space linearizations

   linear compression
- ★ Improvement of FEL performance in terms of pulse length tunability and intensity
- ★ Flexible longitudinal pulse shaping in general (e.g. for wakefield experiments)

### Longitudinal phase space diagnostics based on TDS and energy spectrometer

- ★ Provide useful information on electron beams
- ★ Both with high resolution, high dynamic range, and single-shot capability
- ★ Mitigation of coherent radiation effects of screen based diagnostics, e.g. COTR
- ★ Be aware of systematic errors and the definition and meaning of resolution

### Control of the longitudinal phase space by dual-frequency linear accelerators

- ★ Higher harmonic RF systems for longitudinal phase space linearizations
   linear compression
- ★ Improvement of FEL performance in terms of pulse length tunability and intensity
- ★ Flexible longitudinal pulse shaping in general (e.g. for wakefield experiments)

### Special applications of longitudinal phase space diagnostics

- ★ May provide useful information on X-ray pulses
- ★ Reversible Electron Beam Heater for Suppression of Microbunching Instabilities

### Acknowledgments

# Thanks for lots of helpful information and discussions to ...

- P. Evtushenko at Jlab
- P. Craievich at Elettra
- D. Filippetto at LBNL
- Y. Otake at SPring-8
- P. Piot and H. Edwards at Fermilab
- Y. Ding, P. Emma, J. Frisch, Z. Huang, and H. Loos at SLAC
- my colleagues at DESY and at the University of Hamburg

### Acknowledgments

# Thanks for lots of helpful information and discussions to ...

- P. Evtushenko at Jlab
- P. Craievich at Elettra
- D. Filippetto at LBNL
- Y. Otake at SPring-8
- P. Piot and H. Edwards at Fermilab
- Y. Ding, P. Emma, J. Frisch, Z. Huang, and H. Loos at SLAC
- my colleagues at DESY and at the University of Hamburg

# Thank you for your attention!