Linear Collider

E. Elsen

XXXIX International Meeting on Fundamental Physics,
Feb 7-11, 2011, Canfranc (Huesca)

R&D for CLIC
ILC Global Design Effort
A clearly defined (European) Strategy

• The LHC will be the energy frontier machine for the foreseeable future, maintaining European leadership in the field; the highest priority is to fully exploit the physics potential of the LHC, resources for completion of the initial programme have to be secured such that machine and experiments can operate optimally at their design performance. A subsequent major luminosity upgrade (SLHC), motivated by physics results and operation experience, will be enabled by focussed R&D; to this end, R&D for machine and detectors has to be vigorously pursued now and centrally organized towards a luminosity upgrade by around 2015.

• In order to be in the position to push the energy and luminosity frontier even further it is vital to strengthen the advanced accelerator R&D programme; a coordinated programme should be intensified, to develop the CLIC technology and high performance magnets for future accelerators, and to play a significant role in the study and development of a high-intensity neutrino facility.

• It is fundamental to complement the results of the LHC with measurements at a linear collider. In the energy range of 0.5 to 1 TeV, the ILC, based on superconducting technology, will provide a unique scientific opportunity at the precision frontier; there should be a strong well-coordinated European activity, including CERN, through the Global Design Effort, for its design and technical preparation towards the construction decision, to be ready for a new assessment by Council around 2010.
Paths towards the Terascale

- **Collision Energy**
 - high accelerating gradient

- **Collider**
 - two counter-running beams
 (effectively two accelerators)

- **Luminosity**
 - many interesting production cross sections are small
 s-channel $\sigma \sim 1/s$
e^+e^- versus pp

- **LHC**
 - Discovery machine
 - strongly interacting initial state
 - parton distribution results in an inherent scan
- **ILC**
 - elementary particles
 - energy, angular momentum well defined
 - democratic particle production
 - information of the final state almost fully captured in the detector
Higgs Reconstruction and Branching Ratios

An e^+e^- Linear Collider will disentangle the new physics through precision measurements
Circular accelerators for electrons?

- Synchrotron as a collider
 - relatively little RF-power to be installed
 - same accelerating section used again and again (LEP/LHC: \(f_{\text{rep}} \sim 11 \text{ kHz} \))
 - many bunches \(n_b \)
 - Duty cycle at LHC \(f_{\text{rep}} * n_b \sim 40 \text{ MHz} \)
 - LEP \(f_{\text{rep}} * n_b \sim 44 \text{ kHz} \)
- for electrons: Synchrotron radiation imposes practical limit on maximum energy!

\[
\Delta E_{\text{rep}} \propto \frac{1}{\rho} \left(\frac{E}{m} \right)^4
\]

\[
\mathcal{L} = f_{\text{rep}} \frac{n_b N^2}{4\pi \sigma_x \sigma_y}
\]
Use of LEP/LHC rings for e^+e^-?

- Energy loss $E>100$ GeV (a considerable fraction of the beam energy)

- momentum acceptance for the ring!

- for $E>300$ GeV practically all energy radiated in one turn

⇒ Future of electron accelerators is linear
Requirements for a Linear Collider

- **Bunches are used only once**
 - extremely strong focusing
 - repetition rate
 - high gradient
- **High power**
 - Stability requirements
 - realistic treatment of beam power and heat
 - dimensions of facility

<table>
<thead>
<tr>
<th></th>
<th>LEP</th>
<th>ILC</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\sigma_x \times \sigma_y$</td>
<td>130×6 $[\mu m^2]$</td>
<td>500×5 $[nm^2]$</td>
</tr>
<tr>
<td>$N*f_{rep}$</td>
<td>$4*11$ kHz</td>
<td>$3000*5$ Hz</td>
</tr>
</tbody>
</table>
While the storage ring concept for providing clashing-beam experiments (1) is very elegant in concept it seems worth-while at the present juncture to investigate other methods which, while less elegant and superficially more complex may prove more tractable.

Up to now only one collider has been built in Linac-Technology: SLC
Concepts of RF acceleration

- Resonator required for
 - longitudinal component E_z
 - matching of phase velocity
- Two concepts
 - **Traveling wave**
 - Bunch gains energy from field and reduces wave amplitude
 \[E_z = E_0 \cos(\phi) \]
 - **Standing wave**
 - Bunch experiences acceleration corresponding to the average field; field largely unaffected
 \[E_z = E_0 \sin(\omega t + \phi) \sin(kz) \]
 \[= E_0 \sin(\kappa z + \phi) \sin(k z) \]
Generation of RF power

- Klystron
 - velocity modulation of an electron beam in an external field results in a density modulation of the electron beam
 - Electrical field is coupled into wave guide

- Wakefield
 - The field of a moving charged is coupled into a suitable resonator.
R&D for the Compact Linear Collider CLIC

Example for wakefield acceleration
CLIC Layout for 3 TeV
CLIC Characteristics

- High gradient >100 MV/m
- Compact collider; total length ~ 50 km for 3 TeV
- Acceleration in normal conducting structures @ 12 GHz
- Accelerating Field generated by high current drive beam parallel to main beam
 - field efficiently generated "just in time"
 - drive beam generated efficiently
CLEX – CLIC Experiment

Phase coding

1.5 GHz

recombination in DL

Beam all the way through CLEX

Factor 4 interleaving in CR
Power Extraction and Transfer Structure (PETS)

CTF3

SLAC

Measured (current)
Measured (power)
Model (power)
Performance of Accelerating Structures

- Built @ CERN
- Tests @ SLAC

CLIC requires breakdown rates <10^{-7}
Tentative long-term CLIC scenario Shortest, Success Oriented, Technically Limited Schedule (2008)

- System tests
 - Drive beam handling
 - Power transfer on a large scale
Tentative long-term CLIC scenario Shortest, Success Oriented, Technically Limited Schedule (2008)

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>R&D on Feasibility Issues</td>
<td></td>
</tr>
<tr>
<td>Conceptual Design</td>
<td></td>
</tr>
<tr>
<td>R&D on Performance and Cost issues</td>
<td></td>
</tr>
<tr>
<td>Technical design</td>
<td></td>
</tr>
<tr>
<td>Engineering Optimisation & Industrialisation</td>
<td></td>
</tr>
<tr>
<td>Construction (in stages)</td>
<td></td>
</tr>
<tr>
<td>Construction Detector</td>
<td></td>
</tr>
</tbody>
</table>

- System tests
 - Drive beam handling
 - Power transfer on a large scale
International Linear Collider (ILC)
Global Design Effort

B. Wiik et al., A proposal to construct and test superconducting RF structures for linear colliders, TESLA Report 93-01, DESY 1993

Acceleration by standing waves
ILC Layout

- Superconducting linear accelerators of 10 km
 - Nominal average gradient 31.5 MV/m
The Global Design Effort* (GDE)

<table>
<thead>
<tr>
<th>Americas</th>
<th>Europe</th>
<th>Asia</th>
</tr>
</thead>
<tbody>
<tr>
<td>Labs</td>
<td>Labs</td>
<td>Labs</td>
</tr>
<tr>
<td>ANL</td>
<td>Budker, CEA/Saclay, CERN, CIEMAT, CNRS, STFC Daresbury Lab., DESY, ESRF, GSI, INFN, JINR, LAL-Orsay, PSI</td>
<td>BARC, IHEP, IUAC, KEK, RRCAT, Tsinghua Univ., VECC</td>
</tr>
<tr>
<td>BNL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FNAL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>JLAB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LANL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LBNL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LLNL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SLAC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TRIUMF</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Universities/Institutes</td>
<td>Universities/Institutes</td>
<td>Universities/Institutes</td>
</tr>
<tr>
<td>Colorado Univ.</td>
<td>Abertay Univ.</td>
<td>Hiroshima Univ.</td>
</tr>
<tr>
<td>Cornell</td>
<td>Berlin HU</td>
<td>KNU</td>
</tr>
<tr>
<td>FSU</td>
<td>Birmingham Univ.</td>
<td>Nagoya Univ.</td>
</tr>
<tr>
<td>Iowa Univ.</td>
<td>Cambridge Univ.</td>
<td>PAL</td>
</tr>
<tr>
<td>MSU</td>
<td>Dundee Univ.</td>
<td>TIFR</td>
</tr>
<tr>
<td>Notre Dame Univ.</td>
<td>Durham</td>
<td>Tohoku Univ.</td>
</tr>
<tr>
<td></td>
<td>IFIC</td>
<td></td>
</tr>
<tr>
<td></td>
<td>IPJ</td>
<td></td>
</tr>
<tr>
<td></td>
<td>IPN-Orsay</td>
<td></td>
</tr>
<tr>
<td></td>
<td>IPPP Durham</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Krakow</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Lancaster Univ.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>LAPP-Annecy</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Legnaro</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Liverpool Univ.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Manchester Univ.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mannheim</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Oxford Univ.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>RHUL</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Rostock</td>
<td></td>
</tr>
</tbody>
</table>

Based on known participation and received expressions of interest
GDE ILC Timeline (current)

- GDE process
- Reference Design Report (RDR)
- Tech. Design Phase (TDP) 1
- TDP 2
- LHC physics
- Extension due to 2008 Budget situation
- Ready for Project Submission
TD Phase 1 & 2: The R&D Plan

- Stated TDP Goals:
 - Updated ILC design
 - Results of critical risk-mitigating R&D
 - Updated VALUE estimate and schedule
 - Project Implementation Plan
TD Phase Stated Priorities (R&D Plan)

Risk Mitigating R&D
- SCRF Technology (e.g., gradient)
- Damping ring electron cloud
- …

Beam Test Facilities
- ATF / ATF 2 (KEK)
- CesrTA (Cornell)
- TTF/FLASH (DESY)
- …

Machine Design / Cost
- CFS / Value Engineering
- Accelerator Design & Integration
Global SCRF Technology
Implicit but critical GDE goal:

Promote development of 1.3GHz nine-cell expertise & infrastructure in all three regions

Major progress in infrastructure development in all three regions
Global SCRF Technology: ASIA
Global SCRF Technology: ASIA

KEK, Japan
Global SCRF Technology: AMERICAS
Global SCRF Technology: AMERICAS

FNAL, ANL, SLAC, Cornell, JLAB

KEK, Japan
Global SCRF Technology: EUROPE

FNAL, ANL, SLAC, Cornell, SLAC, KEK, Japan
Global SCRF Technology: EUROPE

FNAL, ANL, SLAC, JLAB, Cornell, DESY, LAL, Saclay, INFN Milan, KEK, Japan
Global SCRF Technology

TRIUMF, Canada
SLAC, ANL, Cornell
FNAL, ANL
LAL, ANL
STFC
DESY
LAL
Saclay
INFN Milan
BARC, RRCAT, India
IHEP, KEK, Japan
Global SCRF Technology
Superconducting RF Technology

- 35 MV/m Gradient Yield in 9-cell cavities
- 31.5 MV/m average gradient in a cryomodule
- Critical R&D
- Linac "String Test"
SCRF Priority R&D: Gradient

- Gradient: single biggest cost driver
- RDR baseline:
 - ≥ 35 MV/m vertical (acceptance) test
 - ≥ 31.5 MV/m average operational gradient
- Proof of principle of gradient achieved
 - Many single-cells
 - Tens of 9-cells
 - Operational acceleration demonstrated (TTF/FLASH)
- GDE Focus on mass-production yield and cost
 - TDP-1 goal: *process yield* 50%
 - TDP-2 goal: *production yield* 90%
Progress Towards High-Gradient Yield

Recent Production of cavities at JLAB

Gradient Scatter (up to 2nd-pass proc.)

16 9-cell cavities (10 built by ACCEL/R1 and 6 by AES) processed and tested at JLab since July 2008

Each of the 3 failed cavities is limited by one defect in one cell
Statistics of small sample production

Gradient Yield of 10 ILC Cavities Built by One Vendor Processed and Tested at JLab since July 2008

- ILC TDP1 goal
- ILC TDP2 goal
- First-pass yield [%]
- Second-pass yield [%]

10 ILC 9-cell cavities built by ACCEL/RI: A11, A12, A13, A14, A15, A16, RI18, RI19, RI27, RI28

Eacc [MV/m]
Statistics of small sample production

Gradient Yield of 10 ILC Cavities Built by One Vendor
Processed and Tested at JLab since July 2008

Yield [%]

ICL TDP1 goal
ICL TDP2 goal
First-pass yield [%]
Second-pass yield [%]

10 ILC 9-cell cavities built by ACCEL/RI:
A11, A12, A13, A14, A15, A16, RI18, RI19, RI27, RI28

Eacc [MV/m]
Superconducting RF Technology

- Critical R&D
- 35 MV/m Gradient Yield in 9-cell cavities
- 31.5 MV/m average gradient in a cryomodule
- Linac "String Test"
S1-Global Collaboration

KEK, Japan
S1-Global Collaboration

KEK, Japan
S1-Global Collaboration

FNAL x2

DESY x2

KEK, Japan x4
S1-Global Collaboration

FNAL x2

desy x2

INFN Milan

KEK, Japan x4
S1-Global Collaboration

Complementary activity to regional cryomodule development

FNAL

DESY

INFN Milan

KEK, Japan
Acceptance test of last installed FLASH Module

- Cavity test before assembly: 34.75 MV/m
- Cavities in module 32.5 MV/m
- Operation in FLASH at 30 MV/m and 10 Hz
- FLASH energy increase to 1.2 GeV
- Collaboration of IHEP/Beijing, CEA-IRFU/Saclay, IN2P3-LAL/Orsay, INFN/Milano, CIEMAT/Madrid und DESY
Superconducting RF Technology

- Critical R&D
- 35 MV/m Gradient Yield in 9-cell cavities
- 31.5 MV/m average gradient in a cryomodule
- Linac "String Test"
SRF Test Facilities
SRF Test Facilities

STF (phase I & II)
Under construction
first beam 2011
ILC RF unit test by 2013
SRF Test Facilities

FNAL
- NML facility
- Under construction
- First beam 2010
- ILC RF unit test ~2012

DESY
- STF (phase I & II)
- Under construction
- First beam 2011
- ILC RF unit test by 2013

KEK, Japan
SRF Test Facilities

FNAL
NML facility
Under construction
first beam 2010
ILC RF unit test ~2012

DESY
TTF/FLASH
~1 GeV
ILC-like beam
ILC RF unit
(* lower gradient)

KEK, Japan
STF (phase I & II)
Under construction
first beam 2011
ILC RF unit test by 2013
A string test in each region

• **Complementary testing:**
 – Each region must develop industry and must develop ‘ownership’ of this critical technology

• **No one system will exactly represent the baseline reference design RF unit design (before 2012)**
 – FNAL: beam format [under review]
 – KEK: number of cryomodules [1 (of 3) by end 2012]
 – DESY: gradient [\(\sim 27\text{MV/m}\) average over 3 cryomodules]

• **Strategy must account for infrastructure limitations and construction schedules at each of the three main linac test facilities under development.**
9mA Experiments in TTF/FLASH

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>FLASH design</th>
<th>FLASH experiment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bunch charge</td>
<td>nC 1</td>
<td>3.2</td>
<td>1</td>
</tr>
<tr>
<td># bunches</td>
<td>3250*</td>
<td>2625</td>
<td>7200*</td>
</tr>
<tr>
<td>Pulse length</td>
<td>µs 650</td>
<td>970</td>
<td>800</td>
</tr>
<tr>
<td>Current</td>
<td>mA 5</td>
<td>9</td>
<td>9</td>
</tr>
</tbody>
</table>
9mA Experiments in TTF/FLASH

ILC-like RF unit arrangement

<table>
<thead>
<tr>
<th>Parameter</th>
<th>TTF</th>
<th>XFEL</th>
<th>ILC</th>
<th>FLASH design</th>
<th>FLASH experiment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bunch charge</td>
<td>nC</td>
<td>1</td>
<td>3.2</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td># bunches</td>
<td></td>
<td>3250*</td>
<td>2625</td>
<td>7200*</td>
<td>2400</td>
</tr>
<tr>
<td>Pulse length</td>
<td>μs</td>
<td>650</td>
<td>970</td>
<td>800</td>
<td>800</td>
</tr>
<tr>
<td>Current</td>
<td>mA</td>
<td>5</td>
<td>9</td>
<td>9</td>
<td>9</td>
</tr>
</tbody>
</table>
FLASH Gradient limits
FLASH Gradient limits

![Bar graph showing FLASH Gradient limits for different modules and cavities]

Denis Kostin, MHF-s1, DESY
Global plan for SCRF R&D

<table>
<thead>
<tr>
<th>Calendar Year</th>
<th>2007</th>
<th>2008</th>
<th>2009</th>
<th>2010</th>
<th>2011</th>
<th>2012</th>
</tr>
</thead>
<tbody>
<tr>
<td>Technical Design Phase</td>
<td>TDP-1</td>
<td></td>
<td></td>
<td></td>
<td>TDP-2</td>
<td></td>
</tr>
<tr>
<td>Cavity Gradient R&D to reach 35 MV/m</td>
<td></td>
<td>Process Yield > 50%</td>
<td></td>
<td>Production Yield > 90%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cavity-string test: with 1 cryomodule</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Global collab. for <31.5 MV/m></td>
</tr>
<tr>
<td>System Test with beam 1 RF-unit (3-module)</td>
<td></td>
<td></td>
<td>FLASH (DESY)</td>
<td></td>
<td>STF2 (KEK)</td>
<td>NML (FNAL)</td>
</tr>
</tbody>
</table>
Superconducting RF Technology

Critical R&D

Engineering
Design
Industrialisation
Mass-Production

cost

35 MV/m
Gradient Yield
in 9-cell cavities

31.5 MV/m
average gradient in a
cryomodule

Linac
"String Test"
Cavity: Plug-compatible interface
Cavity: Plug-compatible interface
Component interfaces are reduced to the minimum necessary to allow for system assembly.
Cavity: Plug-compatible interface

Component interfaces are reduced to the minimum necessary to allow for system assembly

- Allow innovative R&D to continue
 - e.g. novel cavity shapes
- Allow quasi-independent regional development of cost-effective manufacture
- Set boundary conditions and maintain focus

Rapid transition from R&D to construction project
Toward Industrialization

- Global status of Industries
 - Research Instruments and Zanon in Europe
 - AES, Niowave, PAVAC in Americas
 - MHI in Asia

<table>
<thead>
<tr>
<th>Project Scope</th>
<th>Cavities</th>
<th>Prod.</th>
</tr>
</thead>
<tbody>
<tr>
<td>European XFEL</td>
<td>~800</td>
<td>2 years</td>
</tr>
<tr>
<td>Project X</td>
<td>~400</td>
<td>3 years</td>
</tr>
<tr>
<td>ILC</td>
<td>~15,500</td>
<td>4 years</td>
</tr>
<tr>
<td>(÷ 3 regions</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Industrial Capacity: status and scope
 - No company currently has required ILC capacity
 - Understand what is needed (and cost) by 2012
Industrialization and cost reduction

• Re-visit previous effort, and update the cost-estimate for production
 – Review the RDR cost estimate (was based on TESLA)
 – Include recent R&D experience (industry/lab)
• Encourage R&D Facilities for industrialization
 – Develop cost-effective manufacturing, quality control and cost-reduction in cooperation with industry
• Reflect the R&D progress for cost-reduction
 – Baseline ⇒ Forming, electrob-beam welding, assembly work…
ILC: more than just SCRF
ILC: more than just SCRF
ILC: more than just SCRF

Sources
- Positron production
- Polarised electrons
- ...
ILC: more than just SCRF

Sources
- Positron production
- Polarised electrons
- …

Damping Rings
- Electron cloud
- Fast kickers
- Low emittance tuning
- …
ILC: more than just SCRF

Sources
- Positron production
- Polarised electrons
- ...

Damping Rings
- Electron cloud
- Fast kickers
- Low emittance tuning
- ...

Beam Deliver System / MDI
- Optics / demagnification
- FD design
- Stability & feedbacks
- Detector integration
- ...

[Diagram showing electron and positron sources, damping rings, and beam delivery systems]
ILC: more than just SCRF

Sources
- Positron production
- Polarised electrons
- ...

Damping Rings
- Electron cloud
- Fast kickers
- Low emittance tuning
- ...

Beam Deliver System / MDI
- Optics / demagnification
- FD design
- Stability & feedbacks
- Detector integration
- ...

Beam Test Facilities
(Non-SRF) Beam Test Facilities
(Non-SRF) Beam Test Facilities

Cornell

INFN Frascati

CesrTA (Cornell)
electron cloud
low emittance

KEK, Japan
(Non-SRF) Beam Test Facilities

Cornell

CesrTA (Cornell)
- electron cloud
- low emittance

KEK, Japan

INFN Frascati

DAφNE (INFN Frascati)
- kicker development
- electron cloud
(Non-SRF) Beam Test Facilities

CesrTA (Cornell)
electron cloud
low emittance

DAΦNE (INFN Frascati)
kicker development
electron cloud

ATF & ATF2 (KEK)
ultra-low emittance
Final Focus optics
Example: e-cloud & CesrTA (Cornell)

- **e-cloud**: high-priority risk mitigating R&D
- **Cornell SLAC KEK INFN…**
- **CesrTA**: dedicated test facility to
 - Test e-cloud suppression techniques
 - Benchmark and develop theoretical understanding (codes)
 - Develop low-emittance tuning techniques
Example: ATF & ATF2 (KEK)

ATF2 (Final Focus)
- Demonstration of demagnification / compact optics
- Vibration stabilisation
- Instrumentation

ATF (Damping Ring)
- Demonstration of ultra-low emittance (2pm) and its stability
- Fast kicker (beam) tests
Integration & Design Activities

Cost (VALUE) Estimate

- Estimated cost (2007) ~6.7 Billion ILCU*
 - 4.87 BILCU shared

- 10,000 person-years “implicit” labour
Integration & Design Activities

• Primary TD Phase Deliverable:
 - Updated design
 - Updated VALUE estimate

• RDR sound base-line
 - Mature, but
 - Conservative

• Use ‘additional’ time to look at options
 - Cost not performance driven
 - CFS cost-driver ⇒ reduce underground volume
Cost-Driver Design Studies

- Single Tunnel Configuration(s)
- Reduced Beam Power
 - less RF,
 - smaller DR
- Central Injector Housing Integration
 - Sources sharing tunnel with BDS
- CFS: Value Engineering

Power In
Power Out
Underground Volume

10-15% TPC
Novel RF Distribution Concepts

2x35 klystrons housed in surface building.

350MW feeds via 0.5m diameter circular waveguide

Klystron Cluster
(SLAC)
Novel RF Distribution Concepts

2x35 klystrons housed in surface building.
350MW feeds via 0.5m diameter circular waveguide

DRFS (KEK)

Klystron Cluster (SLAC)

Single Tunnel Solutions
Klystron Cluster System – Surface Building
Linac Tunnel configurations – 3 of 7 under study
Technical Design Phase and Beyond

- **RDR Baseline**
- **TDP Baseline Technical Design**
- **TDR**
- **New baseline inputs**
- **RDR Alternative Configurations**
- **R&D Demonstrations**
- **Change Request**

- **Design studies**
- **2009**
- **2010**
- **2011**
- **2012**
- **2013**
Summary ILC

- Significant progress on all identified priority R&D (despite 2008 funding crises)
- Primary focus maintained on SCRF (Cost driver)
 - Development in all three regions
 - Significant progress on gradient yield
 - Demonstration of high-gradient cryomodule and plug compatibility
 - No full “ILC-spec” string test within TDR time-scale
- Major Beam Test Facility addressing (non-SCRF) risk mitigating R&D
 - CesrTA – e-cloud
 - ATF2 BDS/MDI issues
- Design and integration activities (including CFS) focusing on updating baseline for TD Phase 2
 - Site variants being studied

 Updated design for ILC will be ready by 2012
Common R&D Activities for ILC & CLIC

- Many technical aspects are independent of acceleration technology and can be addressed in common

- EUROTeV, a 27 M€ design study for a TeV Linear Collider, encompassed both ILC and CLIC during its project duration 2005–2008

- Test facilities such as ATF/ATF2 naturally serve ILC and CLIC purposes

- It is hence natural to collaborate on a world-wide basis by the establishment of common working groups
CLIC – ILC Working Groups

<table>
<thead>
<tr>
<th></th>
<th>CLIC</th>
<th>ILC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Physics & Detectors</td>
<td>L.Linssen, D.Schlatter</td>
<td>F.Richard, S.Yamada</td>
</tr>
<tr>
<td>Beam Delivery System (BDS) & Machine Detector Interface (MDI)</td>
<td>D.Schulte, R.Tomas Garcia, E.Tsesmelis</td>
<td>B.Parker, A.Seryi</td>
</tr>
<tr>
<td>Civil Engineering & Conventional Facilities</td>
<td>C.Hauviller, J.Osborne.</td>
<td>J.Osborne, V.Kuchler</td>
</tr>
<tr>
<td>Positron Generation (new)</td>
<td>L.Rinolfi</td>
<td>J.Clarke</td>
</tr>
<tr>
<td>Damping Rings (new)</td>
<td>Y.Papaphilipou</td>
<td>M.Palmer</td>
</tr>
<tr>
<td>Beam Dynamics</td>
<td>D.Schulte</td>
<td>A.Latina, K.Kubo, N.Walker</td>
</tr>
</tbody>
</table>
Summary LC

- any new very large-scale project of HEP will have to await
 - the successful start-up of LHC and (✓)
 - the first physics harvest
- towards the end of 2012 hence appropriate time to
 - decide on construction of a 0.5 TeV ILC that is upgradeable to 1 TeV
- or / and
 - focus on the multi-TeV region from the start
 - Advance the CLIC concept to maturity