PROSPECTS OF LASER-PLASMA ACCELERATION

Jens Osterhoff, Eckhard Elsen
Gruppe für Plasmabeschleunigung
Universität Hamburg und DESY
Contributions

Lawrence Berkeley National Laboratory
Berkeley, United States

in collaboration with

M. Fuchs, R. Weingartner, D. Habs, and F. Grüner
Ludwig-Maximilians-Universität München
Germany

A. Popp, Zs. Major, F. Krausz, and S. Karsch
Max-Planck-Institut für Quantenoptik
Garching, Germany

in collaboration with

L. O. Silva
Instituto Superior Técnico
Lisbon, Portugal

S. M. Hooker
University of Oxford
United Kingdom

U. Schramm
Forschungszentrum Dresden Rossendorf
Germany
Modern accelerators are large-scale machines

European XFEL at DESY, Hamburg
Electron energy: 17.5 GeV, acceleration gradient: 23 MV/m,
length of beam line: ~3 km, length of accelerator: ~1 km
Plasma accelerators allow for extreme electric fields

LOASIS TREX at LBNL, Berkeley
Laser-driven plasma accelerator for electrons with 1.0 GeV
Length: 3.3 cm, average acceleration gradient: 30 GV/m
Plasma accelerators allow for extreme electric fields

LOASIS TREX at LBNL, Berkeley
Laser-driven plasma accelerator for electrons with 1.0 GeV
Length: 3.3 cm, average acceleration gradient: 30 GV/m

10^3 times larger than in conventional accelerators
Plasma accelerators allow for extreme electric fields

Laser Electron Accelerator

T. Tajima and J. M. Dawson

Department of Physics, University of California, Los Angeles, California 90024

(Received 9 March 1979)

An intense electromagnetic pulse can create a weak of plasma oscillations through the action of the nonlinear ponderomotive force. Electrons trapped in the wake can be accelerated to high energy. Existing glass lasers of power density 10^{18} W/cm2 shine on plasmas of densities 10^{14} cm$^{-3}$ can yield gigaelectronvolts of electron energy per centimeter of acceleration distance. This acceleration mechanism is demonstrated through computer simulation. Applications to accelerators and pulsers are examined.
Plasma accelerators allow for extreme electric fields

Laser Electron Accelerator

T. Tajima and J. M. Dawson
Department of Physics, University of California, Los Angeles, California 90024
(Received 9 March 1979)

An intense electromagnetic pulse can create a weak of plasma oscillations through the action of the nonlinear ponderomotive force. Electrons trapped in the wake can be accelerated to high energy. Existing glass lasers of power density 10^{18} W/cm2 shone on plasmas of densities 10^{18} cm$^{-3}$ can yield gigaelectronvolts of electron energy per centimeter of acceleration distance. This acceleration mechanism is demonstrated through computer simulation. Applications to accelerators and pulsers are examined.

40 TW laser pulse (3×10^{18} W/cm2) inside plasma with $n_e = 4.3\times10^{18}$ cm$^{-3}$

→ 30 pC of electrons at 1 GeV

accelerated over a distance < 3 cm
(with > 33 GV/m fields)

Lasers provide sub-femtosecond synchronization

Potentially useful in various scientific fields:
- 4D imaging of electronic motion in atoms, molecules, solids, and plasmas
- Nonlinear QED
Laser-plasma accelerator basics

Wake excitation

Electron injection
High-intensity lasers can drive large plasma wakes

Laser pulse properties

- $a = 2$
- $\lambda_c = 800 \text{ nm}$
- $\Delta \tau = 25 \text{ fs FWHM}$
- $w_0 = 23 \mu\text{m FWHM}$

Plasma background density

- $n_p \leq 5 \times 10^{18} \text{ cm}^{-3}$

Laser pulse propagates into a plasma-density ramp, electrons get trapped
High-intensity lasers can drive large plasma wakes

Laser pulse properties

- $a = 2$
- $\lambda_c = 800 \text{ nm}$
- $\Delta \tau = 25 \text{ fs FWHM}$
- $w_0 = 23 \mu \text{m FWHM}$

Plasma background density

- $n_p \leq 5 \times 10^{18} \text{ cm}^{-3}$

Laser pulse propagates into a plasma-density ramp, electrons get trapped
Injection controls charge, energy spread, emittance
Injection controls charge, energy spread, emittance

Self-injection (or wave-breaking): hard to control, stability issues → undesirable

Controlled injection: control over accelerated charge, bunch energy spread, and emittance, less fluctuations
Injection controls charge, energy spread, emittance

Self-injection (or wave-breaking): hard to control, stability issues → undesirable

Controlled injection: control over accelerated charge, bunch energy spread, and emittance, less fluctuations

In principle, triggered injection into a plasma wave could achieve beam quality (low emittance) beyond state-of-the-art photocathodes (due to space-charge shielding provided by ions, rapid acceleration)
Injection controls charge, energy spread, emittance

Self-injection (or wave-breaking):
- hard to control, stability issues
 → undesirable

Controlled injection:
- control over accelerated charge,
 bunch energy spread, and emittance, less fluctuations

Methods for controlled injection:
- **Density down-ramp injection**

- **Laser-triggered injection**

- **Ionization injection**

- **External beam injection**

In principle, triggered injection into a plasma wave could achieve beam quality (low emittance) beyond state-of-the-art photocathodes (due to space-charge shielding provided by ions, rapid acceleration)
Generation of soft-X-rays from an LPA driven undulator

Fuchs et al., Nature Physics 5, 826 (2009)

Laser pulse parameters
- 850 mJ, 37 fs FWHM
- 23 µm focus FWHM

Undulator parameters
- 1.2 mm gap, K = 0.55
- $\lambda_u = 5$ mm, 60 periods

Undulator
Gas cell
Magnetic quadrupole lenses
Aluminium foil
Phosphor screen 1 (movable)
Phosphor screen 2
Magnetic spectrometer
X-ray CCD
Transmission grating
Gold mirror

Undulator parameters
Generation of soft-X-rays from an LPA driven undulator

- 1 pC of charge in effective electron spectrum
- \(~10^5\) photons per shot
- Estimated peak brilliance \(1.3\times10^{17}\) (s mrad\(^2\) mm\(^2\) 0.1% BW\(^{-1}\)

Laser pulse parameters
- 850 mJ, 37 fs FWHM
- 23 \(\mu\)m focus FWHM

Fuchs et al., Nature Physics 5, 826 (2009)

Resonance condition:

\[
\lambda = \frac{\lambda_u}{2n\gamma^2} \left(1 + \frac{K^2}{2} + \gamma^2\Theta^2 \right)
\]
Generation of soft-X-rays from an LPA driven undulator

- ~1 pC of charge in effective electron spectrum
- ~10⁷ photons per shot
- Estimated peak brilliance 1.3×10¹⁷ (s mrad² mm⁻² 0.1% BW)⁻¹

Laser pulse parameters 850 mJ, 37 fs FWHM
23 µm focus FWHM

Resonance condition:

\[\lambda = \frac{\lambda_u}{2n\gamma^2} \left(1 + \frac{K^2}{2} + \gamma^2\Theta^2 \right) \]

Fuchs et al., Nature Physics 5, 826 (2009)
Phase-space characterization of LPA beams needed

Many properties of electrons beams from laser-wakefield accelerators have only been insufficiently characterized:

- **Pulse duration**
 upper limit ~50 fs RMS with electrooptic sampling [van Tilborg, Leemans et al., Phys. Rev. Lett. 96, 014801 (2006)]

- **Slice energy spread**
 inferred from PIC simulations

- **Longitudinal and transverse beam density modulations** (e.g. at $\lambda / 2$)
 inferred from PIC simulations

- **Transverse beam emittance and source size**
 inferred from PIC simulations, old pepper pot measurements [Fritzler et al., Phys. Rev. Lett. 92, 165006 (2004)]
Phase-space characterization of LPA beams needed

Many properties of electrons beams from laser-wakefield accelerators have only been insufficiently characterized:

- **Pulse duration**
 upper limit ~50 fs RMS with electrooptic sampling [van Tilborg, Leemans et al., Phys. Rev. Lett. 96, 014801 (2006)]

- **Slice energy spread**
 inferred from PIC simulations

- **Longitudinal and transverse beam density modulations** (e.g. at $\lambda / 2$)
 inferred from PIC simulations

- **Transverse beam emittance and source size**
 inferred from PIC simulations, old pepper pot measurements [Fritzler et al., Phys. Rev. Lett. 92, 165006 (2004)]

Know how at established accelerator facilities would help to analyze LPA beams more thoroughly:

(C)OTR, IR/THz spectrometry, transverse deflection cavities, characterization of XUV/x-ray emission from undulators, characterization of betatron emission

Also important: beam position measurements (BPMs), transport and imaging (magnetic beam transport systems)
Energy gain scalings and single-stage limitations

1. Laser diffraction: mitigated by transverse plasma density tailoring (plasma channel)

Plasma waveguide

Laser

Capillary discharge plasma waveguides

- Plasma fully ionized for $t > 50$ ns
- After $t \sim 80$ ns plasma is in quasi-equilibrium: Ohmic heating is balanced by conduction of heat to wall
- Ablation rate small: cap. lasts for $>10^6$ shots
- $n_p \approx 10^{17} - 10^{19}$ cm$^{-3}$
Energy gain scalings and single-stage limitations

1. Laser diffraction: mitigated by transverse plasma density tailoring (plasma channel)

Capillary discharge plasma waveguides
- Plasma fully ionized for \(t > 50 \text{ ns} \)
- After \(t \approx 80 \text{ ns} \) plasma is in quasi-equilibrium: Ohmic heating is balanced by conduction of heat to wall
- Ablation rate small: cap. lasts for \(>10^6 \) shots
- \(n_p \approx 10^{17} - 10^{19} \text{ cm}^{-3} \)

In this example:
- \(Z_R = 2 \text{ mm}, \) guiding over 16 mm, guiding efficiency > 90%

Energy gain scalings and single-stage limitations

2. Electron-laser dephasing: mitigated by longitudinal plasma density tailoring (plasma taper)

Constant density plasma

Laser pulse, plasma wave travel with $v_{\text{wave}} = v_g < c$

Electrons travel with $v_e \approx c > v_{\text{wave}}$

\Rightarrow they outrun the accelerating field structure
Energy gain scalings and single-stage limitations

2. Electron-laser dephasing: mitigated by longitudinal plasma density tailoring (plasma taper)

- **Constant density plasma**
 - Laser pulse, plasma wave travel with $v_{\text{wave}} = v_g < c$
 - Electrons travel with $v_e \approx c > v_{\text{wave}}$
 - \Rightarrow they outrun the accelerating field structure

- **Rising density plasma**
 - Plasma wave phase velocity v_{wave} may be set to v_e
 - \Rightarrow electrons can be phase locked
 - [Rittershofer et al., Phys. Plasmas 17, 063104 (2010)]
Energy gain scalings and single-stage limitations

3. Laser depletion: energy loss into plasma wave excitation

$$U_L \propto n_p^{-\frac{3}{2}}$$

Coefficients determined from PIC simulations in the quasi-linear regime ($a_0 = 1.5$) by courtesy of C. B. Schroeder et al., Proceedings of Advanced Accelerator Concepts Workshop (2010)
Energy gain scalings and single-stage limitations

3. Laser depletion: energy loss into plasma wave excitation

Single-stage laser energy

\[U_L \propto n_p^{-\frac{3}{2}} \]

Accelerating gradient

\[E \propto n_p^{\frac{1}{2}} \]

Single-stage length

\[L_{depl} \propto n_p^{-\frac{3}{2}} \]

Coefficients determined from PIC simulations in the quasi-linear regime (\(a_0 = 1.5 \))

Energy gain scalings and single-stage limitations

3. Laser depletion: energy loss into plasma wave excitation

Single-stage laser energy

\[U_L \propto n_p^{-\frac{3}{2}} \]

Accelerating gradient

\[E \propto n_p^{\frac{1}{2}} \]

Single-stage length

\[L_{depl} \propto n_p^{-\frac{3}{2}} \]

Single-stage energy gain

\[W \propto n_p^{-1} \]

Coefficients determined from PIC simulations in the quasi-linear regime (\(a_0 = 1.5 \))

Energy gain scalings and single-stage limitations

3. Laser depletion: energy loss into plasma wave excitation

\[U_L \propto n_p^{-\frac{3}{2}} \]

\[E \propto n_p^{\frac{1}{2}} \]

\[L_{depl} \propto n_p^{-\frac{3}{2}} \]

\[W \propto n_p^{-1} \]

Coefficients determined from PIC simulations in the quasi-linear regime (\(a_0 = 1.5 \))

Staging necessary for higher electron energies

Constructing a TeV-class LPA-based linear collider

Design based on
- 10 GeV LPA modules at $n_e \approx 10^{17} \text{ cm}^{-3}$
 BEnkeley Lab Laser Accelerator (BELLA)
- quasi-linear wake: e- and e+, wake control
- staging and coupling modules

W. P. Leemans and E. Esarey, Physics Today (March 2009)
Constructing a TeV-class LPA-based linear collider

Design based on
- 10 GeV LPA modules at $n_e \approx 10^{17} \text{ cm}^{-3}$
- BErkeley Lab Laser Accelerator (BELLA)
- quasi-linear wake: e- and e+, wake control
- staging and coupling modules

Laser technology requirements?
Size of accelerator?

W. P. Leemans and E. Esarey, Physics Today (March 2009)
Future user facilities require beam parameter stability

Laser-plasma accelerators have suffered from low shot-to-shot reproducibility

Ways to improve electron beam stability

• Minimizing variations in laser and plasma parameters

• Improved control over crucial laser parameters
 e.g., pulse-front tilt (Popp, Osterhoff et al., Phys. Rev. Lett. 105, 215001 (2010)),
 laser pointing (Gonsalves, Osterhoff et al., Phys. Plasmas 17, 056706 (2010))

• Employing laser pulses matched to plasma conditions $\tau_L \approx \frac{\lambda_p}{2c}$

• Driving acceleration process in the quasi-linear regime, no dark currents $a \approx 1$

• Separating injection & acceleration stages, controlling injection, no wavebreaking
A steady-state-flow gas cell stabilizes plasma conditions

Steady-state-flow gas cell advantages over gas jets

- Allows for high repetition rates (10's of kHz)
- Lasts > 10^5 shots
- Virtually no gas flow in the interaction region
- No turbulence or shocks (compared to jets)

A steady-state-flow gas cell stabilizes plasma conditions

<table>
<thead>
<tr>
<th>Acceleration results</th>
<th>Gas cell</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peak energies</td>
<td>220 MeV</td>
</tr>
<tr>
<td>Energy fluctuations</td>
<td>± 2.5 %</td>
</tr>
<tr>
<td>Energy spread</td>
<td>> 2 % RMS</td>
</tr>
<tr>
<td>Peak charge</td>
<td>~ 10 pC</td>
</tr>
<tr>
<td>Charge fluctuations</td>
<td>±16 %</td>
</tr>
<tr>
<td>Divergence</td>
<td>0.9 mrad RMS</td>
</tr>
<tr>
<td>Pointing stability</td>
<td>1.4 mrad RMS</td>
</tr>
<tr>
<td>Injection</td>
<td>~ 100 %</td>
</tr>
</tbody>
</table>

Beam divergence
0.9 mrad RMS

 Counts (arb. units)

Counts (arb. units)

Spectral reproducibility

Tuesday, February 22, 2011
A steady-state-flow gas cell stabilizes plasma conditions

<table>
<thead>
<tr>
<th>Acceleration results</th>
<th>Gas cell</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peak energies</td>
<td>220 MeV</td>
</tr>
<tr>
<td>Energy fluctuations</td>
<td>±2.5 %</td>
</tr>
<tr>
<td>Energy spread</td>
<td>>2 % RMS</td>
</tr>
<tr>
<td>Peak charge</td>
<td>~10 pC</td>
</tr>
<tr>
<td>Charge fluctuations</td>
<td>±16 %</td>
</tr>
<tr>
<td>Divergence</td>
<td>0.9 mrad RMS</td>
</tr>
<tr>
<td>Pointing stability</td>
<td>1.4 mrad RMS</td>
</tr>
<tr>
<td>Injection</td>
<td>~100 %</td>
</tr>
</tbody>
</table>

Beam divergence
0.9 mrad RMS

…in 2008!

LWFA record

Intensity or pulse-front tilt usually originates from laser angular chirp (AC) caused by an imperfect stretcher/compressor alignment:
- hard to diagnose
- small amounts of AC have large effect on the stability of LPAs

Eliminating laser intensity-front tilt increases stability

Intensity or pulse-front tilt usually originates from laser angular chirp (AC) caused by an imperfect stretcher/compressor alignment

- hard to diagnose
- small amounts of AC have large effect on the stability of LPAs

Eliminating laser intensity-front tilt increases stability
Collective beam oscillations
→ way to tailor betatron radiation?
→ useful for beam cooling?
Laser-plasma accelerator technology has advanced quickly in recent years

Milestone experiments: quasi-monoenergetic beams, plasma guiding and GeV electron energies, controlled injection, stability enhancements, soft-X-ray undulator radiation

Lots of research still to be done for compact photon source or collider applications

Milestone experiments needed: emittance measurements, slice energy spread characterization, FEL, 10 GeV accelerator module, staging, positron capturing, advancements in laser technology (luminosity requirements)

Plasma accelerators may have the potential to revolutionize accelerator technology and could make them much more **compact, affordable, and therefore accessible**
Thanks for your attention!