Femtosecond Optical Synchronization System for FLASH

Short Overview

Matthias Felber - DESY

On behalf of the LbSyn Team M. Bock, M. Bousonville, T. Lamb, H. Schlarb, S. Schulz

SINAP FEL-Collaboration Workshop, Hangzhou 2011.08.29

Agenda

- > Synchronization needs and system layout
- > Optical synchronization at FLASH
- > The basic components of the system
 - Master Laser Oscillator (MLO)
 - Link stabilization units
 - Bunch Arrival-time Monitor (BAM)
- > Beam-based feedback
- > Synchronization of external lasers

Synchronization needs in a (seeded) FEL facility

> Goal

- > Main sources for arrival-time changes
 - Arrival-time of the photo cathode laser pulses
 - Phase of the RF gun
 - Amplitude and phase of the booster module(s)

RF requirements for 10 fs arrival stability: $\Delta \phi < 0.005^{\circ}$ @ 1.3 GHz $\Delta A/A < 1.6^{*}10^{-5}$

Layout of the synchronization system

The reference timing information is encoded in the precise repetition rate of an optical pulse train

Schematic of full expansion state at FLASH (2015)

The synchronization hutch at FLASH

> Optical table - full expansion state

- 2 lasers (for redundancy)
- 16-port free-space distribution
- 16 fiber amplifiers (EDFAs) in 4 boxes
- 14 link stabilization units based on OXC
- 4 RF based link stabilization units
- 1.3 GHz backup
- Diagnostics...

> Four electronic racks

- 5 VME crates (in future μTCA)
- 22 feedback loops (DSP, FPGA)
- 18 piezo drivers (± 300 V)
- 15 (or 30?) laser-diode drivers
- 50 stepper motor drivers
- > 40 temperature readouts
- tons of monitor signals
- ~ 300 cables to/from optical table

Master laser oscillator (MLO) + Distribution

Fiber link stabilization by balanced optical cross-correlation

Link stabilization setup: in-house "industrialized" design

3rd iteration of mechanical layout

Sometimes noise on signal, origin is under investigation...

Beam arrival-time monitor (BAM)

BAM frontend

Shown here: 2nd iteration, 3rd iteration is in progress...

Arrival time measurements

Matthias Felber | Femtosecond Optical Synchronization System for FLASH | SINAP Collaboration Workshop, Hangzhou | 2011.08.29 | Page 12

DESY

Beam-based injector feedback

Arrival-time of PCL Phase of RF gun Amplitude of booster Phase of booster module

1st arrival time monitor difference 1st and 2nd arrival-time monitor EBPM + BPMs / difference 3rd and 2nd arrival-time monitor (/ SLM) (bunch compression monitor / fiber laser + EO)

Beam-based feedback: topology at FLASH

Beam Based Feedbacks:

- BAM before BC2 corrects phase in RF-Gun
- BAM and BCM after BC2 simultaneously correct amplitude and phase in ACC1 and 3rd harmonic
- BAM and BCM after BC3 correct amplitude and phase in ACC23

Slow (several 10 Hz macropulses) beam-based feedback

No Beam Based Feedback Learning Feed Forward ON rms = 74 fs

- rapid fluctuations averaged out
- resolution of BAM ~ 10 fs for single shot can be reduced to ~ fs for macro pulse

Courtesy: W. Koprek

Fast (intrapulse) beam-based feedback

Courtesy: Ch. Schmidt

Laser-to-Laser (L2L) synchronization

Typical phase noise and timing jitter of a Ti:Sa at 1.3 GHz

Dangerous pitfall: piezo resonance

Laser-to-laser synchronization: RF PLL

Principle of Operation for Control and Measurement

traditional synchronization:

- based on a RF down-mixing scheme
- reference either RF from MO or generated from "link pulse train"

jitter $\sigma_{\text{lock}} \gtrsim 30 \text{ fs}$

/orkshop, Hangzhou | 2011.08.29 | Page 20 DESY

Principle of Operation for Control and Measurement

traditional synchronization:

- based on a RF down-mixing scheme
- reference either RF from MO or generated from "link pulse train"
- timing jitter $\sigma_{\text{lock}} \gtrsim 30 \text{ fs}$

out-of-loop measurement:

optical cross-correlator

L2L synchronization: RF vs. OXC PLL – drift & jitter

Principle of Operation for Control and Measurement

traditional synchronization:

- based on a RF down-mixing scheme
- reference either RF from MO or generated from "link pulse train"
- timing jitter $\sigma_{\text{lock}} \gtrsim 30 \text{ fs}$
- prerequisite for optical lock

all-optical synchronization

- lock to cross-correlator signal at zero-crossing
- expected jitter < 10 fs
- it-of-loop measurement:
- optical cross-correlator

L2L synchronization: RF distribution & lock vs. OXC PLL

Requirements for developing a synchronization system

> Infrastructure

- Environment
 - Temperature stabilization Vibration suppression EMI shielding
- Typical laboratory equipment

Optical spectrum analyzer Autocorrelator RF phase- and amplitude noise analyzer Baseband analyzer Fast scopes (\Box 8 GHz) RF spectrum analyzer (\Box 10GHz) Splicer + PM splicing equipment etc...

> Engineering skills

Optics (Free space- and fiber) Electronics (low noise analog / fast digital) FPGA programming Software (Control system integration / feedback) Mechanical (small and precise / big and robust) RF

> Time, Money and Manpower

During the past years many fruitful collaborations contributed to the progress

Thank you for your attention!

